
Generalizing Pre-Trained Neural Language Models

Examen de doctorat

Nicolas Garneau

Doctorat en Informatique
Philosophiæ doctor (Ph. D.)

Québec, Canada

© Nicolas Garneau,

Résumé

Dans sa forme la plus générique, un modèle de langue est entraîné à prédire le prochain
symbole étant donnée un historique de symboles. Les symboles peuvent être des mots ou des
caractères par exemple. Entraîné sur un corpus de texte, un modèle de langue peut donc
prédire la probabilité d'une séquence de symboles de longueur indéterminée. Les modèles
de langue sont utilisés dans plusieurs applications du traitement automatique de la langue
naturelle telle que la traduction automatique où l'on s'en sert pour obtenir la traduction la
plus probable dans la langue cible étant donné une liste de candidats. Dans les dernières
années, les réseaux de neurones sont devenus l'état de l'art en matière de modélisation de la
langue. Il a été démontré que ces modèles de langue préentraînés sont intrinsèquement des
extracteurs de caractéristiques (représentations langagières) avec lesquels on peut ajouter un
simple classi�cateur pour accomplir une tâche spéci�que comme de la classi�cation de texte
ou de l'étiquetage de séquence. Le web contient un volume de données textuelles colossal et
nous voyons maintenant l'apogée de modèles plus imposants en nombre de paramètres qui
poussent les limites de l'état de l'art encore plus loin. Cependant, ces puissants modèles de
langue préentraînés peuvent seulement être transférés e�cacement vers des tâches de la même
langue qui est limitée principalement à l'anglais pour le moment.

Même si ces modèles obtiennent des performances exceptionnelles sur une langue spéci�que,
les transférer vers une autre langue est une avenue de recherche sous-explorée. Dans cette
proposition, nous présumons que d'utiliser un modèle de langue préentraîné sur un corpus
anglophone pro�tera tout autre modèle de langue tout comme aux tâches que nous tentons
d'accomplir dans la langue cible qui en découlent (e.g étiquetage de séquences en danois).
L'objectif principal de cette proposition est d'explorer le transfert multilingue des modèles
de langue préentraînés, donc de les généraliser à des langues sous représentées en termes
de ressources textuelles. Pour atteindre cet objectif, nous nous inspirons du travail qui a
été accompli pour transférer des représentations de mots �xes. Ce champ de recherche actif
a généré plusieurs méthodes pour transférer de telles représentations préentraînées ce qui
constitue le point de départ de nos expérimentations.

Transférer des représentations langagières vers des tâches de même langue assume intrinsè-
quement un vocabulaire similaire entre le modèle de langue et le jeu de données de la tâche.
Transférer un modèle de langue préentraîné d'une langue source vers une langue cible invalide
cette hypothèse, surtout si les deux langues ou jeux de données ont un lexique très di�érent.

Nous prévoyons également explorer l'utilisation de métadonnées externes tels que des images

ii

ou le pro�l d'un usager pour conditionner un modèle de langue préentraîné dans un contexte
conversationnel où le champ lexical di�ère du modèle pré-entraîné.

Pour terminer, nous proposons d'étudier les dynamiques d'apprentissage des modèles de langue
dans un contexte multilingue en contraignant les représentations vectorielles à l'aide d'un jeu
de données composé d'analogies.

Le résultat de ce projet sera de fournir diverses manières de transférer des représentations
de mots contextuelles obtenues à l'aide d'un modèle de langue neuronal anglophone vers une
langue ou un champ lexical cible.

iii

Abstract

In its most generic form, a language model is trained to predict the next symbol given a history
of symbols. Symbols can either be words or characters for example. Trained on a corpus, a
language model can therefore predict the probability of a sequence of symbols of inde�nite
length. The language models are used in several applications of natural language processing
such as machine translation where it is used to obtain the most likely translation into the
target language given a list of candidates. In recent years, neural networks have become the
state of the art in language modelling. It has speci�cally been shown that these pre-trained
language models are inherently feature extractors (language representations) with which one
can add a simple classi�er to accomplish a speci�c task like text classi�cation or sequence
labelling. The Web contains a colossal amount of textual data and we now see the apogee of
more imposing models in number of parameters which push the state of the art even further.
However, these powerful pre-trained language models can only be e�ectively transferred to
tasks of the same language which is limited mainly to English for the moment.

While these models obtain exceptional performances on a speci�c language, transferring them
to another language is an under-explored research avenue. We assume that using an English
pre-trained language model will bene�t to any other language model as well as the downstream
tasks in the target language (e.g. sequence labelling in Danish). The main objective of this
proposal is to explore the multilingual transfer of pre-trained language models, therefore to
generalize the models to languages which are under-represented in terms of textual resources.

Transferring language representations from one task to another inherently assume a similar
vocabulary between the language model and downstream task's dataset. Transferring a pre-
trained language from a source language to a target language invalidates this hypothesis,
especially if the two languages or the dataset have a very di�erent lexicon.

To achieve our goal, we inspire ourselves by the work that has been accomplished to transfer
�xed word representations from a source to a target language. This active �eld of research
has generated several methods to transfer such pre-trained word representations which is the
starting point for our experiments.

We also plan to explore the use of external metadata such as images or user pro�les to condition
a pre-trained language model in a conversational context where the lexicon is di�erent from
the pre-trained model's.

Finally, we propose to study the learning dynamics of pre-trained language models in a multi-

iv

lingual setting by grounding the vectorial representations using a multilingual analogy dataset.

The result of this project will be to provide a way of transfer contextual representations of
words to a target language obtained using an English pre-trained neural language model.

v

Contents

Résumé ii

Abstract iv

Contents vi

List of Figures viii

Remerciements xi

Introduction 1

1 Background 3

1.1 N-Gram Language Models . 3
1.1.1 Language Models . 3
1.1.2 N-Gram Language Models . 4

1.2 Word Embeddings . 5
1.2.1 Cross-Lingual Word Embedding Models 7

1.3 Neural Networks . 10
1.3.1 Feed-Forward Neural Networks . 10
1.3.2 Recurrent Neural Networks . 11
1.3.3 Transformer Neural Networks . 12

2 Literature Review 14

2.1 Language Models Granularity . 14
2.1.1 Conditional Language Models . 15
2.1.2 N-Gram Language Models Limitations 15

2.2 Evaluation of Language Models . 16
2.3 Neural Language Models . 17

2.3.1 Models Variety . 18
2.4 Neural Language Generation . 23

2.4.1 Free Form Generation . 23
2.4.2 Conditioned Generation . 24

3 Research Avenues 29

3.1 Generalizing Neural Language Generation to Other Languages 29
3.1.1 Related Work . 30
3.1.2 Research Proposal . 31

vi

3.2 Transferring Neural Language Models for Multimodal Conditional Textual
Generation . 35
3.2.1 Related Work . 36
3.2.2 Research Proposal . 37

3.3 Grounding Multilingual Neural Language Models Using Structured Data . . 40
3.3.1 Related Work . 41
3.3.2 Research Proposal . 42

Conclusion 46

A Long-Short-Term-Memory Networks 47

B Language Models Training Details 49

B.0.1 Hyperparameters . 51

C Typical Underwriter-Broker discussion 53

D Technical Details 55

D.1 Programming Language and Libraries . 55
D.2 Fully Reproducible Methodology . 55

D.2.1 Data Version Control . 56
D.2.2 Experimentation Logging . 56
D.2.3 Dockerization . 56

Bibliography 57

vii

List of Figures

1.1 Word-to-Word Translation . 9
1.2 Transformer Global Architecture . 13

2.1 Feedforward Language Model . 19
2.2 Recurrent Language Model . 20
2.3 Back-Propagation Through Time (BPTT) . 21
2.4 Truncated Back-Propagation Through Time . 21
2.5 Image Captioning . 27

3.1 Proposed Cross-Lingual Neural Language Model Architecture 33
3.2 Positional Layer . 34
3.3 GPT Generation . 36
3.4 Plug And Play Architecture . 39

A.1 Long Short Term Memory Neural Network . 48
A.2 Attention Mechanism . 48

B.1 Scheduled Sampling . 51

viii

To my wife Laurie-Anne who

believes in me and my bouncing

ideas.

ix

Enjoy your problems.

Shunryu Suzuki

x

Remerciements

Je remercie Luc Lamontagne, mon directeur de recherche depuis maintenant 6 ans qui m'a
donné le goût de faire de la recherche. Il a toujours été présent pour me conseiller à propose
de mon parcours académique, professionnel et personnel.

Je remercie également mes collègues du laboratoire de recherche en apprentissage automatique
de Laval, sans qui les journées n'auraient pas été remplies de moments de ré�exion et de bons
fou rires. Être sérieux dans notre recherche est important pour bien performer mais du plaisir
l'est d'autant plus.

xi

Introduction

In the past few years, the natural language processing (NLP) area has received a considerable
amount of attention from researchers in the community of machine learning. The resurgence
of neural networks is undoubtedly for something. We have seen multiple neural architectures
outperforming classical methods in a wide range of natural language understanding tasks. A
key component that lies within these architectures are language models.

Language models are traditionally known as having the capacity of evaluating the probability
of a given textual utterance as well as generating text. Such a feature becomes handy in many
natural language understanding applications. It is used in machine translation to obtain
the most probable translation given a list of potential candidates in the target language, for
example.

Modelling a language is a hard challenge. Every language hides its subtle complexities that
make them ambiguous, thus hard for a machine to reason about. However, several languages
share syntactic and semantic commonalities. Leveraging these similarities to improve a punc-
tual model on a speci�c language is thus a valid assumption. Hence, cross-lingual learning is
thoroughly studied, especially with the rise of neural networks where knowledge transfer is a
common practice.

A language model is often used in a speci�c context. Other than some linguistics aspects that
may condition a language model like the previous word in a conversation, many other elements
can be considered in order to better condition such a model. Image captioning is one of the
�rst applications of conditional language modelling. It is possible to broaden the context with
a user's pro�le, whole documents, business rules, etc. in order to specialize a given language
model.

In this research proposal, we analyze the structure and the usability of neural language models.
With the outstanding amount of textual data available on the web, we have seen the rise
of new language model architectures able to ingest and distill a large amount of linguistic
information. These recent architectures pushed forward the state of the art in many natural
language understanding applications but mainly for one language: English. Even though
we begin to see the publication of these models in a few other languages, they require a
considerable amount of data and computational power to be properly trained. This leaves
underrepresented languages in the dark and only wealthy companies can a�ord to train from
scratch these architectures.

1

We thus propose to study the cross-lingual transfer of these pre-trained English models, hence
to generalize these models towards lower-resource languages and alleviate the need for a huge
amount of textual data and computational resources. We also propose to broaden the con-
textual conditioning of such architectures that strictly handle textual conditioning. Still, the
common thread of this research proposal is to leverage and analyze pre-trained language mod-
els as black boxes. We do not aim to improve these architectures directly, but rather their use
in a speci�c context.

The �rst chapter of this proposal introduces the basis of statistical language modelling. It also
proposes a brief overview of neural networks and the primary architectures and components
that are commonly used in natural language processing such as word embeddings.

The second chapter provides an extensive overview of the di�erent language model architec-
tures, evaluation schemes and training procedures that are speci�c to neural networks. It also
provides a thorough analysis of the neural language generation in a free-form manner as well
as conditioned generation.

Chapter three introduces the �rst two research avenues that speci�cally tackle the two issues
previously introduced. The very �rst avenue is about cross-lingual neural language transfer.
We propose several steps that we hope will lead us to the ability to transfer a source language
model towards a target language with minimal resources and e�ort. The second avenue is
framed along with the evaluation of language models. We propose to apply a cross-lingual
neural model on a question answering dataset that induces several contextual elements such
as PDF forms and user pro�les. We hope that these contextual elements will be of great use
for the language model to generate specialized textual content. The last research avenue aims
to study the learning dynamics of a pre-trained multilingual language model using a specially
curated cross-lingual analogy dataset.

2

Chapter 1

Background

1.1 N-Gram Language Models

In this section, we introduce the generic mathematical notation of a language model and how
we can practically model language using a traditional method called N-Grams.

1.1.1 Language Models

In the most generic form, language models are trained to predict the next symbol si given
a sequence of k previous symbols (si−k, . . . , si−1) using a textual corpus. More speci�cally,
language models are designed to estimate the following conditional probability;

P (si|si−k, . . . , si−1). (1.1)

Symbols can either be words, characters or byte-pairs, which we detail in section 2.1. This
makes language models inherently decoders or generators, being able to generate text given
a history of symbols. The generation of symbols can either be greedy or optimized (which we
further discuss in Section B.0.1).

Subsequently, language models can predict the probability of a given sequence S of k symbols;

P (S) = P (s1, . . . , sk). (1.2)

A commonly used metric derived from this probability is the perplexity, which we further
describe in Section 2.2.

In the next section, we present a method that has been used for years to model language and
is still a strong baseline, the N-Gram language model.

3

1.1.2 N-Gram Language Models

It is possible to compute Equation 1.2 for a given sequence S of length k using the chain
rule of probability;

P (S) = P (s1) · P (s2|s1) · P (s3|s1, s2) · . . . · P (sk|s1, s2, . . . , sk−1). (1.3)

In practice, we approximate Equation 1.3 using a sequence of n-grams of symbols, restricting
the e�ective history of each probability to be of n− 1 symbols. For a bigram language model,
for example, we approximate the probability of a given symbol based only on the preceding
symbol P (si|si−1).

Using a similar notation as in Jurafsky and Martin (2018), we can de�ne the probability of a
given sequence S of length k using the bigram assumption as follows:

P (ski) ≈
k∏

i=1

P (si|si−1). (1.4)

We can generalize Equation 1.4 to the n-gram case;

P (ski) ≈
k∏

i=1

P (si|si−n, . . . , si−1). (1.5)

We obtain such probabilities of n-grams using the maximum likelihood estimation (MLE) by
computing the occurrence counts in a corpus. In the bigram case, we can obtain the probability
of a symbol si given the preceding one si−1:

P (si|si−1) =
C(si−1, si)

C(si−1)
(1.6)

where C(si−1, si) is the number of times the symbol si−1 appears before the symbol si in the
corpus and C(si−1) is the number of times si−1 appears in the corpus. One can thus, having
a proper corpus in hand and a n-gram language model, predict the next symbol (i.e. word)
of the following sentence:

Nicolas walks towards the bar to order a glass of ...

Given the context, words that �rst come up to mind might be water, beer or wine. Those that
personally know Nicolas would assign the word whisky a high probability of being generated! 1

Usual n-gram models will use bigrams, trigrams and even up to 5-grams of history to model
a particular language. It goes without saying that a bigger history needs a bigger corpus to
train such n-gram models. Google computed the counts for up to 5-grams on a training corpus

1As you can see, this would be a perfect case for conditional language modelling, leveraging the taste pro�le
of Nicolas in order to generate the most probable word according to his favourite drinks.

4

of one trillion words from public Web pages. They released the data via the Linguistic Data
Consortium (LDC)2. n-gram language model limitations are further discussed in Section 2.1.2.

Neural networks are going to be the main tool to conduct the experiments during this research.
They are, in many natural language processing applications, the state-of-the-art models so it
is worth mentioning the main varieties of neural architectures used in language modelling.

We begin by introducing Word Embeddings which are an essential building block for repre-
senting words as vectors. We also present Cross-Lingual Word Embedding learning since we
are going to make use of these models in Chapter 3. We then present the feed-forward neural
architecture followed by the recurrent neural networks. We conclude this section with the
recent Transformer architecture which pushed the state-of-the-art at an unprecedented level
in many NLP tasks.

1.2 Word Embeddings

Words are categorical values that need to be converted into vectors in order to be used within
a machine learning model. One method of vectorizing words is one-hot encoding. Given a
matrix E ∈ {0, 1}|V|×|V|, each line i = 1, . . . , |V | is represented by a perpendicular vector wi

where

wi
i = 1 and 0 elsewhere. (1.7)

We de�ne a lookup function h(s) = i that takes as input the symbol s and returns its index i in
the embedding table E. Thus, the vector representation of the speci�c word �cat� is obtained
the following way;

E[h(cat),] = wcat = [0
dog

, 0
paw

, . . . , 1
cat

, . . . , 0
milk

, 0
hat

] (1.8)

where wcat ∈ {0, 1}|V| is the row vector representation for the word cat. We can see E as a
simple lookup matrix.

One-hot encodings have major limitations. For example, using vector arithmetic such as the
cosine distance between one vector and another always yields zero. Being able to perform
vector arithmetic between words is an important feature that may facilitate any downstream
natural language processing tasks.

Take for example the words �cat� and �kitten� that have similar meanings. Having similar word
vectors for these words would be bene�cial when comes the time to assign them a particular
attribute such as in the task of part-of-speech tagging (POS) for example.

We also use the cosine distance as a measure of how two words are far apart, making one-hot
encoding unsuitable for this metric;

2https://catalog.ldc.upenn.edu/LDC2006T13

5

https://catalog.ldc.upenn.edu/LDC2006T13

cosine_distance(w1,w2) = 1− w1 ·w2

||w1|| · ||w2||
. (1.9)

A more judicious way to represent words is by using contextual vectors. Again, a word vector
w ∈ N|V| is used but instead of using the one-hot representation, we count every time another
word appear within the context 3 of that target word and assign this count to the index of
this speci�c context word;

E[h(cat),] = wcat = [1
dog

, 4
paw

, . . . , 0
cat

, . . . , 3
milk

, 0
hat

] (1.10)

Working with these vectors can be prohibitive if the vocabulary size is very large. We can
reduce the dimensionality of these words representations by performing Singular Value De-
composition (Wall et al.), keeping only the top k singular values. We can thus obtain a matrix
of word embeddings E ∈ R|V|×k instead of E ∈ R|V|×|V|. k values range from a few hundred
to a thousand.

Recent advances in learning dense representations for words are using shallow neural networks.
Mikolov et al. proposed 2 architectures, Skip-Gram and CBOW parameterized by two embed-
ding matrices, Θ = Et ∈ R|V|×k,Ec ∈ R|V|×k, which are the target and context embeddings
respectively. At the end of the training loop, only Et is used as the embedding matrix for
the vocabulary V. The �rst method (Skip-Gram) tries to predict context words that appear
within a speci�c window of a target word. CBOW on the contrary tries to predict the target
word given its context.

Given a sequence of training words w1, w2, w3, . . . , wN , the objective of the Skip-Gram model
is to maximize the average log probability of the following objective function;

1

N

N∑
n=1

∑
−i≤n≤+i,i 6=0

log p(wn+i|wn) (1.11)

where i is the context window size. A wise trick that alleviates the prohibitive computation of
the previous conditional probability is negative sampling. Instead of computing the probability
over the whole vocabulary V, this method only uses k negative samples. Mathematically, the
objective function using negative sampling is de�ned as the following loss function with respect
to the parameters Θ;

J (Θ) =
1

N

N∑
n=1

∑
−i≤n≤+i,i 6=0

log σ(wc>
i wt

n) +

k∑
j=1

log σ(−wc>
j wt

n) (1.12)

where k is the number of negative samples randomly selected from the vocabulary. The CBOW
model can similarly be express in terms of negative sampling and has thus been omitted.

3The context is usually de�ned by a window of words that surround the target word. Typical window sizes
span from 1 to 10 words on each side of the target word.

6

Pennington et al. on the other hand uses a similar architecture to predict the magnitude
of co-occurrence of a target word and a word that appeared in its context (also based on a
window size) by adding two sets of biases parameters bt ∈ R|V| and bc ∈ R|V|. The model is
de�ned with the following loss function;

J (Θ) = f(xi,j)(

|V|∑
i,j=1

wt>
i wc

j + bti + bcj − log xi,j)2 (1.13)

where xt,c is the number of times the word wc appeared in the context of the word wt and f(·)
is a weighting function that discounts rare and frequent co-occurrences. The previously cited
methods speci�cally tackled the word level embeddings but they also generalize to characters
and BPE levels.

A common evaluation scheme of such word embedding models is via the analogical reasoning
task introduced by Mikolov et al.. The task consists of �nding analogies such that Berlin is
to Germany what Paris is to France using simple vector arithmetic;

wBerlin −wGermany + wFrance ≈ wParis (1.14)

We further detail how we are going to use this speci�c task in Section 3.3.

1.2.1 Cross-Lingual Word Embedding Models

The previously introduced word embedding models have been extensively used in a monolin-
gual setting, consistently improving natural language understanding models in every down-
stream task. However, these downstream tasks usually need a considerable amount of anno-
tated data in order to be e�ective, which leaves underrepresented language apart. This raised
the need to transfer word embeddings trained in a source language (e.g. English) with much
more training data towards a target language (e.g. Danish) that has much less annotated
resources.

Ruder et al. provide a good overview of the di�erent methods that are available to date for
transferring word embeddings from one source language to a target language. They suggest
three di�erent types of word alignment models and in this proposal, we will introduce only
the mapping-based approach since it is the most popular and is ful�lled with many annotated
resources. We refer the reader to Ruder et al. (2018) for details on other types of alignment.
The goal of word alignment is to �nd a joint cross-lingual embedding space where the source
and target word embeddings are projected.

Mapping method. There are actually four di�erent mapping methods (regression, orthogo-
nal, canonical and margin). We plan to use the regression method since it perfectly suits our
case where one source embedding space may not be in the same dimension as the target em-
bedding space (which is required for more robust orthogonal methods). A regression mapping
learns a linear projection with a transformation matrix Ws→t that maps the vector space of
the source language s to the vector space of the target language t. W is learned by minimizing
the following mean squared error (MSE) loss;

7

JMSE(W) =
n∑

i=1

||Wxs
i − xt

i||2 (1.15)

where xs
i and xt

i are the i
th source and translated target word embeddings respectively. This

assumes that we have a seed lexicon in hand (often called the seed dictionary) that is used
to obtain translation pairs from a particular word ws from the source language in the target
language wt.

Seed lexicon. For our experiments, we plan to use an o�-the-shelf bilingual lexicon that
has been learned using an internal translation tool at Facebook4. This dataset comprises 110
large-scale ground-truth bilingual dictionaries with up to 100,000 pairs of translations. These
quality lexicon are more than su�cient to train a mapping model since it requires at least
5000 pairs (Ruder et al., 2018).

Re�nement. It has been shown (Hartmann et al., 2019) that mapping-based approaches
(either supervised or unsupervised) usually need to re�ne the mapping between the source
and target pairs (Artetxe et al., 2018). This problem arises when the seed lexicon is composed
of less than 5000 pairs (Vulic and Korhonen, 2016). Since we'll be using many translation pairs
as previously stated, we won't be tackling this issue at �rst but it may prove to be necessary
after preliminary experiments.

Retrieval. Cross-lingual embedding models are often used to retrieve the translation of a
speci�c source word given its embedding. Suppose that we have the word �cat� and we want
to retrieve its French translation. One of the possible translations could be �chat�, �chaton�
or even �félin�. To do so, we'll use the �cat� word embedding xecat taken from the English
embedding table Ee and the pre-trained projecting matrix We→f to obtain the projected
�cat� representation in the French target language;

x̂fcat = We→fxecat (1.16)

where x̂fcat constitutes our best estimated representation of the word �cat� in French. We then
use the pre-trained French embedding matrix Ef to retrieve the most similar word from the
vocabulary;

h(wf) = argmaxEfx̂fcat
T (1.17)

where argmax is a function that retrieves the index with the highest value in a given vector
and h(wf) corresponds to the index of the symbol w in the French vocabulary. It is important
to note that wf may not be the exact word �chat� but it could also be �chaton� or �félin� as
previously stated.

4https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries

8

https://github.com/facebookresearch/MUSE##ground-truth-bilingual-dictionaries

This retrieval method is the same as retrieving the nearest neighbours of the source word
embeddings based on the cosine similarity assuming our embeddings are of unit length. In our
cross-lingual language model, we will inevitably use retrieval to cycle from one language to
another. We also plan to use Cross-Domain Similarity Scaling (CSLS) introduced by Conneau
et al. which prevents the hubness problem (Radovanovi¢ et al., 2010) and leads to better
performances compared to conventional nearest neighbours approach as demonstrated by Dinu
and Baroni. We depict the usual work�ow of a word-to-word translation in the context of a
sentence in Figure 1.1.

Un verre de whisky Source Word Retrieval

A glass of whisky

Mapping
Layer

Source
embeddings

Estimated target
embeddings

Predicted target
embeddings

Predicted target
words

Source
words

Will be used in the
target language

model!

Figure 1.1 � An example of a word-to-word translation using a mapping based approach.
Each word translation is independent from one another. We illustrate here the word-to-word
translation using the scope of a sentence since it will be used in subsequent �gures and help
better understand the proposed approach of neural language model transfer.

This brings us to the evaluation of cross-lingual word embedding models. The intrinsic evalu-
ation of cross-lingual word embeddings models is Bilingual Lexicon Induction (BLI); the goal
is to determine the most appropriate translation from a word wt

i for each query from ws
i . To

this end we will use the same datasets as Conneau et al. (2017) (lexicon5 and embeddings6).
The extrinsic evaluation lies in the downstream task; does the transferred language model
helps to achieve better performance than less reliable pre-trained models or in the worst case,
no model at all. This evaluation scheme is inherent in our proposed architecture in Section 3.3
since we will be using the transferred word representations in the source language model.

5https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
6https://fasttext.cc/docs/en/crawl-vectors.html

9

https://github.com/facebookresearch/MUSE##ground-truth-bilingual-dictionaries
https://fasttext.cc/docs/en/crawl-vectors.html

1.3 Neural Networks

1.3.1 Feed-Forward Neural Networks

A neural network is a mathematical function f that takes an input x (usually a vector or a
matrix) and is composed of a set of learnable parameters Θ. In the simplest case, a neural
network may take the form of a linear regression;

ŷ = f(x; Θ) = x · w + b (1.18)

This simple network consists of a single neuron that takes as input x, has a set of parameters
(w and a bias b), predicting a value ŷ. In this speci�c case, all values (x, y) and parameters
(w and b) are scalars.

We can design a neural network with multiple neurons having multiple features as input using
the vector/matrix notation as follows;

ŷ = f(x; Θ) = x ·W + b (1.19)

where x ∈ Rj is a vector of j features, W ∈ Rj×l represents l neurons consisting of j weights
each and b ∈ Rl is a vector of l biases. The �nal output ŷ ∈ Rl thus consist of l values (in
the case of a classi�cation problem with l classes for example). W and b are the parameters
of the neural network, which are represented as Θ in function f .

The parameters Θ are updated with the back-propagation algorithm (see Goodfellow et al.
(2016)) by computing a loss function that we call J (Θ) in this proposal. For a language
model, the Cross-Entropy loss is most often used to compute the error of the neural network.

To add expressivity to a neural network, we introduce non-linear functions right after the
application of a matrix W followed by the addition of a bias b on an input x. We will then
de�ne a layer analogously as an f function as follows;

fi(x; Θi) = σ(x ·W + b) (1.20)

We can then apply di�erent functions f to an input x;

ŷ = f2(f1(x)) (1.21)

We call this architecture �Feed-Forward� since the information �ows linearly from the input
x through the di�erent layers f and outputs a vector y. This architecture can be used as a
language model by designing an input x that consists of k previous words and then predicts
the next words ŷ. This architecture will be detailed in section 2.3.1.

10

For the sake of simplicity, we refer the reader to the comprehensive Deep Learning book by
Goodfellow et al. (2016) for the procedure in training a neural network (basically learning the
set of parameters Θ), amongst other details.

1.3.2 Recurrent Neural Networks

Recurrent neural networks (RNN) is a speci�c architecture that handles sequential data. Nat-
ural language is a perfect case of sequential data; as we read, we sequentially process words
to infer a speci�c sense of a given sentence.

They are designed to preserve a certain amount of history in memory while processing a given
sequence (as humans normally do). They hold what is called a hidden state that is updated
subsequently at each time step. One can think of a sentence (sequence of words) where each
word is fed into the recurrent cell one at a time thus updating the internal state of the cell
(and at the same time producing an output value) until the end of the sentence. We can thus
see an RNN as an �Encoder� that encodes a sentence into a �x representation.

Vanilla recurrent neural networks depend on two inputs, xt ∈ Rj and ht−1 ∈ Rl, and are
usually expressed in the following form;

ht = f(xt,ht−1; Θ) = tanh(Wixt + bi + Whht−1 + bh) (1.22)

where Wi ∈ Rj×l are the parameters that maps the input xt to the hidden dimension, Wh ∈
Rl×l are the parameters that maps the previous hidden state ht−1 to a new intermediary
hidden state and each of the input have their corresponding biases, bi ∈ Rl and bh ∈ Rl.
The tanh activation function is then applied to the resulting computation, which produces
the hidden state at time t, ht ∈ Rl.

RNN architectures are rarely used to model language in practice because they are hard to train
(Pascanu et al. (2013)). A more sophisticated architecture that mitigates vanishing gradient
is the Long Short Term Memory network (LSTM, Hochreiter and Schmidhuber (1997)), which
we detail in Appendix A.

Using recurrent neural networks to model language is not new. Graves and Sutskever et al.
demonstrated in the past that LSTMs are very e�ective to retain previous information in
memory, thus modelling language. Mikolov's thesis also used such architectures to model
language. Once an RNN is trained to model a language, it is able to generate textual data.
It can thus be seen as a �Decoder�, decoding words at each time step. Recent state-of-the-art
RNN-based language models will be detailed in section 2.3.1.

Attention Mechanism

An attention mechanism is simply a function f that takes an arbitrary number inputs (from
1 to many) and outputs a score for each of these inputs. The mechanism introduced by
Bahdanau et al. in the context of neural machine translation is composed of a single feed-

11

forward layer f that takes as input a hidden state he
i that has been generated by the Encoder

and the previous hidden state of the Decoder hd
t−1 which outputs a score ei;

ei = f(he
i ,h

d
t−1). (1.23)

The scores for each word in the source sentence conditioned on the Decoder's previous hidden
state are concatenated and a softmax is applied to obtain the weight vector α. The conditioning
context ct is then the weighted sum of the hidden states of the Encoder He

0:n
;

ct =

n∑
i=0

αih
e
i (1.24)

which is concatenated with the target language current word embedding E(wd
t); xt = E(wd

t)⊕
ct. Note here that the conditioning context ct is changing at each generation step of the
Decoder. This allows the Decoder to pay attention to di�erent parts of the source sentence
during the generation of the sentence in the target language. Figure A.2 in Appendix A
illustrate the behaviour of an attention mechanism in the context of machine translation
using a RNN.

1.3.3 Transformer Neural Networks

Recently, a special kind of architecture has been proposed by Vaswani et al. for the machine
translation application, the Transformer-based Neural Network. This architecture is a special
kind of neural network largely inspired by the attention mechanism of Bahdanau et al. (2014)
previously introduced. Similarly, it comprises an �Encoder� that encodes the source language's
sentence and a �Decoder� that decodes the next word in the target language conditioned on
the source sentence representation. We can in fact see the Decoder as a language model in
the target language.

The �Transformer Encoder� begins by encoding the source sentence using a �self-attention�
mechanism. The inputs Q ∈ Rn×j , K ∈ Rn×j , V ∈ Rn×j are called the Query, Key, Value
respectively regardless it is the Encoder or Decoder. In the case of the Encoder, the Query,
Key and Value are the same (self-attention). Thus, Q = K = V where the matrices represent
the concatenation of n words' embeddings of dimension j that compose the source sentence 7.
The attention mechanism is expressed in the following way;

O = softmax(
QK>√
dk

)V (1.25)

7In practice, it is not literally the words' embeddings. They are in fact projected in di�erent spaces, hence
creating multiple attention heads

12

where QK> ∈ Rn×n represents n attention scores that each word in the sentence attributes
to every other words (even itself) 8 . The reader can assume that

√
dk is a constant used

for stability in the computation. The output O is further used in subsequent layers, creating
�piles� of attention layers. We forward the reader to the paper of Vaswani et al. for details of
the computations.

At the very end of the Transformer Encoder, an encoded representation of each word in
the source sentence is generated which we call Qd ∈ Rn×j . In fact, this constitutes the
conditioning element of the Transformer Decoder during the generation of the next word in
the target sentence, often called the �intra-attention� mechanism between the Encoder and the
Decoder. The Key K ∈ Rm×j and Value V ∈ Rm×j correspond to the m words' embeddings
of the decoded word so far in the target sentence. The �nal output of the Decoder is the
prediction of the next word that follows in the target sentence given the decoded words so far
and the encoded source sentence.

In the case of the decoder, the attention matrix A ∈ Rn×m corresponds to the attention scores
(i.e. importance of) for the n words in the source sentence attributed to the m decoded words
so far in the target language. Figure 1.2 illustrates a one-layer version of the architecture for
the sake of simplicity.

K

Transformer
Encoder

Transformer
Decoder

Qe Ke Ve Kd Vd

Qd ŷ

Figure 1.2 � Overview of the Transformer Architecture proposed by Vaswani et al. (2017).

It is now easy to understand that a Transformer-based language model is a Transformer
Decoder that is conditioned only on the previous decoded words, thus performing only self-
attention given the n previous words. Similar to the Transformer Encoder, with can then
de�ne the input of a Transformer-based language model as follows; Q ∈ Rn×j , K ∈ Rn×j ,
V ∈ Rn×j . The only di�erence with the Transformer Encoder previously introduced is that a
Transformer-based language model is not trained to encode a source sentence representation
for later conditioning. It is only trained to encode the source sentence to predict the next word
in that same sentence. State-of-the-art Transformer-based language models will be detailed
in section 2.3.1.

8It is important to note that the values of Q are broadcasted which means each row of Q are multiplied
with each row of K.

13

Chapter 2

Literature Review

2.1 Language Models Granularity

Language models, as introduced in section 1.1, are able to predict the next symbol given
a sequence of k previous symbols. We denote Vs the set of all possible symbols. These
models may act on di�erent granularity such as words, characters, n-grams of characters
commonly called Byte-Pair Encoding (BPE) 1 or Word Pieces (Devlin et al., 2018) also known
as subwords, yielding di�erent vocabulary sizes. On a word level, a language model predicts
with a certain probability the next word wi given a sequence of k previous words;

P (wi|wi−k, . . . , wi−1) (2.1)

The number of words w in the vocabulary Vw can reach more than a 100,000 words (Trans-
formerXL (Dai et al., 2019) has more than 200,000 symbols in its vocabulary) and thus the
model may be prohibitive in memory requirements. A language model can also act on the
character level, reducing considerably the vocabulary size. Such models then predict the next
character ci given a sequence of k previous characters;

P (ci|ci−k, . . . , ci−1) (2.2)

Another way to handle the vocabulary of a language model is to use BPE. BPE is an algorithm
of data compression that replace the most common pair of consecutive bytes (characters in
our case) with a special byte that does not occur within the corpus. It was �rst introduced
by Sennrich et al. (2016) in the Neural Machine Translation task.

Recent architectures such as Radford (2018) also use the BPE algorithm to generate a vo-
cabulary of reasonable size. We denote a byte-pair as bi = [ci−1; ci] where ci−1 and ci are a
common pair of consecutive characters and de�ne a byte-pair language model as follows;

1Byte pair encoding [...] is a simple form of data compression in which the most common pair of consecutive
bytes of data is replaced with a byte that does not occur within that data. (Wikipedia contributors, 2019)

14

P (bi|bi−k, . . . , bi−1) (2.3)

Note that bi could also be a single character. Usually, we cap the number of byte-pairs to
around 40,000 symbols as Radford proposed.

2.1.1 Conditional Language Models

Fundamentally, language models are conditional language models; they model the probability
to generate the next symbol conditioned on k previous symbols. But language models can be
conditioned on many other things. It is possible to design a language model that reproduces a
speci�c stylistic, model an author, or a speci�c domain of applications (Ficler and Goldberg,
2017).

One of the most famous applications of a conditioned language model is machine translation
(MT). Bahdanau et al. condition the generation of the next word in the target language not
only on the previous words generated from the model but also on all the words in the source
sentence, which we call the context c.

We can then de�ne a conditional language model as follows;

P (si|si−k, . . . , si−1; ci) (2.4)

Where ci is the context at time i. We speci�cally write the context in bold type since it can
contain multiple conditioning elements (author, style, sentiment, etc.).

Image captioning is an example of conditional language generation. It leverages the content
of an image to generate a small description of it. Usually, an abstract representation vector of
the image is obtained using a pre-trained convolutional neural network (He et al., 2016) which
serves as the conditioning parameter c. It is important to note that the context may change
during the generation of a speci�c symbol, as in the model proposed by Bahdanau et al. for
the task of machine translation.

Essentially, language models can be conditioned on any kind of contexts and they are usually
used like so. We illustrate many examples of how a context c can be obtained and fed to a
language model mathematically in Section 2.4.

2.1.2 N-Gram Language Models Limitations

One can be easily convinced that n-gram language models inhibit a fundamental problem:
they rely on a short range of previously seen symbols.

Goldberg speci�cally demonstrated 2 that a character n-gram model can use up to 10 previous
characters to predict the next one on the Shakespear corpora. More than this would result in

2https://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

15

https://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

a really small probability when comes the time to predict the next word given a long history
of symbols.

In the case of a combination of words never seen in the training corpus, the probability is just
unknown. Several smoothing methods are used to circumvent the unseen n-gram problem.
One can use the Laplace smoothing (Manning et al., 2008, page 260) to remove probabilities
of 0. Another solution is to do a linear interpolation between di�erent n values of n-grams
(unigram, bigram, etc.) by taking the weighted mean. These methods work well in practice
but are limited in �exibility. We cannot think of adding a conditioning context c in n-gram
language models since it will inevitably drop all probabilities of seing the next symbol to zero.

While the results of n-grams language models are syntactically interesting, there is a major
lack of coherence throughout the generation of a long piece of text. Neural networks have
proven to better handle a longer range of previous k symbols which helps preserve coherence
and at the same time being able to easily condition a language model on a given context
c without the need for smoothing methods. We speci�cally detail language models using
di�erent neural network architectures in Section 2.3.

2.2 Evaluation of Language Models

Language models are able to estimate to probability of a given sequence of symbols. In
practice, we don't use the probabilities but the perplexity which is a metric that is commonly
used to evaluate intrinsically a language model. The perplexity is the inverse probability
computed over a complete test set, normalized by the number of symbols. Given a sequence
T composed of n symbols, the perplexity of such a set is given by this formula;

Perplexity(T) = P (s1, s2, . . . , sn)
1
n (2.5)

where the lower the perplexity the better the language model. It can be seen as �how surpris-
ing� a textual utterance is. While this metric gives a good indicator of the performance of a
language model and is widely used in a generic evaluation setting (Melis et al., 2018; Merity
et al., 2018), it may not represent it faithfully. At this moment, it may be more meaningful to
evaluate a language model within a speci�c natural language processing task such as Machine
Translation (Bahdanau et al., 2014), and Question Answering (Yin et al., 2016) by measuring
the e�ective gain of performance. We propose in Section 3.2 to evaluate a multimodal neural
language model in a conversational context.

Several of these downstream tasks (Machine Translation, Dialogue Systems) rely on two other
metrics that can be used to evaluate a language model. The �rst one is the BLEU score (Pap-
ineni et al., 2002) which evaluates the quality of an automatically translated text compared to
a human's translation. This metric is based on the overlapping unigrams and bigrams between
two sequences, thus capturing the precision of a translation. Another metric (ROUGE) has
been proposed (Lin, 2004) and uses several combinations of n-grams to compute an overall

16

score of a given generated sentence and its corresponding ground truth. This metric rather
captures the recall of a particular generation.

However, these metrics are not always well suited for the evaluation of automatically generated
language. Liu et al. showed that BLEU and ROUGE scores are loosely correlated with human
judgment when comes the time to evaluate dialogue response generation. Also, these metrics
can only be used with conditional language modelling and when the number of plausible target
sentences is limited.

Another form of evaluation is based on word embeddings. Given a ground truth sentence
S ∈ Rn×d composed of n word vectors w where w ∈ Rd and a predicted sentence Ŝ composed
of the same number of word vectors, one can compute a similarity between these two sentences
using various metrics. One way to compute the similarity between two sentences is to use the
average of the embeddings for each sentence and then compute the cosine similarity between
the two averaged representations s and ŝ in the following fashion;

s =
1

n

∑
i∈n

wi

ŝ =
1

n

∑
i∈n

ŵi

sim← cosine_similarity(s, ŝ).

(2.6)

The exact same sentences will produce a similarity of one while two completely di�erent
sentences produce a lower similarity score around 0.2-0.4.

This leads to one last form of evaluation that is more reliable but a lot more costly than the
previous ones; human evaluation. This metric of evaluation has serious disadvantage such that
it is not automatic thus taking a lot of time to perform. It is also hard to give a rating to a
generated sentence of paragraph. However, a human can easily spot inconsistent sequences of
words of incoherent paragraphs generated by a language model.

Given all these possible ways to evaluate language models, every method has its drawbacks
and there is no magic way to properly assess the quality of automatically generated text 3.
Either way, this proposal is going to rely mainly on perplexity and human evaluation as an
evaluation metric across research avenues.

2.3 Neural Language Models

Neural language models have been thoroughly studied in the past years. Di�erent architectures
have been proposed as well as their limitations exposed (Jozefowicz et al., 2016) and this section
is dedicated to introduce the most notable ones.

3This could be, in fact, a whole research proposal.

17

We refer the reader to Appendix B for in-depth training details that need to be taken care
of in order to obtain state-of-the-art language models. These details are often omitted in
publications.

2.3.1 Models Variety

We begin this subsection by presenting a strong baseline using a feed-forward neural architec-
ture that has been introduced in section 1.3.1. RNN, presented in section 1.3.2, have been for
a long time the state-of-the-art in language modelling and are thus presented next. We then
conclude this subsection with the new state-of-the-art architectures used to model languages,
the Transformer-based (Attentional) language models that were introduced in section 1.3.3.

Feedforward Language Models

As stated in section 1.3.1, feed-forward neural networks are a mathematical function f that
takes as input a vector x ∈ Rd parameterized by W ∈ Rd×|V| and b ∈ R|V|, a set of learnable
weights. In the context of language modelling, we properly de�ne our input x based on a �xed
size of k previous words need to predict the nth word;

x = wn−k ⊗ . . .⊗wn−1 (2.7)

where ⊗ is the concatenation operator and w are word embeddings obtained from a lookup
table E. If each word embeddings are composed of 100 components, the resulting dimension
of the input x will be of size k × 100. In its simplest form, a one-layer feed-forward neural
language model would be expressed in the following way;

x = wn−k ⊗ . . .⊗wn−1

h = σ(xW + b)

y = softmax(h)

ŷ = argmax(y)

(2.8)

where w ∈ Rd W ∈ Rk∗d×|V|, b ∈ R|V|, h ∈ R|V| and σ denotes a non-linear function.

Similar to the Equation 1.19, we obtain a feed-forward language model that generates a vector
ŷ ∈ R|V| which corresponds to the score of each word in the vocabulary. We call these scores
the logits. This model (as well as most of the next architectures presented in this proposal)
is trained with the Cross-Entropy loss. Even though these models seem rather simple, they
are a pretty strong baseline in the task of language modelling as demonstrated in the work of
Bengio et al. (2003).

Recurrent Language Models

Similar to Goldberg (2017), we hereby lay a speci�c notation for RNN-based LM. We use xi:j

to denote a sequence of word embeddings. An RNN-based LM is thus a function that takes as

18

[a, glass, of]

MLP

d * 3

1 x |V|

whisky

...

winebeer

Figure 2.1 � A Feedforward Language Model. Taking as input the concatenation of each
word's embedding w ∈ Rd and outputs a score for each word in the vocabulary V ∈ R|V|. In
this case, the window of k previous words to predict the next one is of size 3.

input an arbitrary length ordered sequence x1:n of n din-dimensional embeddings and returns
a sequence of dout-dimensional vectors h1:n, parameterized by Θ;

h1:n = f(x1:n; Θ) (2.9)

One of the very �rst RNN-based LM was proposed by Sutskever et al. (2011), where they were
using a vanilla RNN for text generation. The current state-of-the-art RNN-based LM is held by
the AWD-LSTM 4 architecture (based on the LSTM cell introduced in section 1.3.2) proposed by
Merity et al. (2017a) This architecture introduced several regularization techniques speci�cally
for language models.

One thing to consider in the RNN-based language models is that the hidden state h ∈ Rd

that is generated at each time step is never the same size as the vocabulary (usually much
lower). This creates the need to add a speci�c mapping layer M ∈ Rd×|V| that takes as input
the hidden state hn and outputs a vector y ∈ R|V| which in fact adds a lot of parameters to
the architecture;

yt = htM (2.10)

4Several improvements have been proposed recently (Gong et al., 2018; Takase et al., 2018; Wang et al.,
2019; Melis et al., 2020).

19

Press and Wolf proposed to tie the parameters of the embedding layer E with the mapping
layer M which enforces M = E>. It also forces h ∈ Rdembed where dembed is the dimension
of the embeddings. Indeed, it o�ers the opportunity to share parameters across layers thus
reducing the number of parameters signi�cantly.

RNN

a

glass

RNN

glass

of

RNN

of

whisky

wi-1

M M M

wi wi+1

hi hi+1 hi+2

Figure 2.2 � A Recurrent Language Model. Taking as input one word embedding w ∈ Rd at a
time and outputs a hidden state hi+1 that is fed into the mapping layer M which gives a score
for each word in the vocabulary V which is used to predicting the next word. The window
size a Recurrent Language Model is unbounded, contrary to Feedforward and Transformer
language models.

Training an RNN-based language model can be long since the parallelization of RNN is dif-
�cult. The training algorithm, called Back Propagation Through Time (BPTT), is used to
update the weights of the recurrent cell. BPTT works by unrolling the recurrent neural net-
work, as shown in Figure 2.2. For each input, there is an output prediction. At the end of the
sequence, a loss is computed over every time steps and then the weights are updated. Suppose
we have this very long sentence;

Nicolas walks towards the bar after meeting is good old friend

Jean-Simon, whom he hasn't seen in a long time, to order some salted

peanuts and a glass of whisky.

Only triggering the back-propagation algorithm at the end of long sequences like this one
would prevent the recurrent neural network to update its weights often, thus learning slowly
the natural aspect of a language.

However, a judicious technique called Truncated Back Propagation Through Time (Truncated

20

BPTT) accelerate the process of training such architectures. Instead of only triggering the
back-propagation algorithm at the last time step (tn), we split the inputs into k-length se-
quences of symbols where k < n allowing the update of the parameters of the network much
more often. This leads a faster training of such architectures. Usually ranging from 10 to 100
symbols. We illustrate the di�erence between BPTT and truncated BPTT in Figure 2.3 and
Figure 2.4 respectively.

RNN

a

glass

RNN

glass

of

RNN

of

whisky

RNN

Nicolas

walks

RNN

walks

towards

RNN

towards

the

...

t1 t2 t3 tn-2 tn-1 tn

J(ϴ)1 J(ϴ)2 J(ϴ)3 J(ϴ)n-2 J(ϴ)n-1 J(ϴ)n

J(ϴ)

Figure 2.3 � Standard Back Propagation Through Time, the back-propagation algorithm is
triggered at the time step tn.

RNN

a

glass

RNN

glass

of

RNN

of

whisky

RNN

Nicolas

walks

RNN

walks

towards

RNN

towards

the

...

t1 t2 t3 tn-2 tn-1 tn

J(ϴ)1 J(ϴ)2 J(ϴ)3 J(ϴ)n-2 J(ϴ)n-1 J(ϴ)n

J(ϴ)i=1 J(ϴ)i=k

Figure 2.4 � Truncated Back Propagation Through Time (b) triggers the back-propagation
algorithm more often. In the example, it is triggered at every 3 symbols processed by the
recurrent cell, t3, t6, . . . , tn.

We expose the detailed equations of an RNN-based language model in order to fully grasp the
understanding of the process at each time step;

21

xt = E(wt)

ht = RNN(xt;ht−1)

yt = htM

(2.11)

where E ∈ R|V|×d is the embedding lookup matrix, xt,ht,ht−1 ∈ Rd and Md×|V| which
corresponds to (Press and Wolf, 2017) as E>.

Transformer-based Language Models

There has been a huge body of work with Transformer-based language models in the last two
years. These models are mainly composed of feed-forward layers 5.

The �rst introduced Transformer-based LM is proposed by Liu et al. where they cherry-picked
only the decoder from Vaswani et al. (2017). It is important to note that unlike the RNN-
based LM, where at each time step only the i-th symbol is processed in order to predict the
i+ 1-th symbol, Transformer-based LM models needs to reprocess the whole sequence of 1 : i

symbols at each time, due to the absence of recursion.

Also, since there is no recursion in the Transformer model, a positional encoding is added to
the word's representation. We explicit the inputs and outputs in Equation 2.12. For the sake
of simplicity, we refer the reader to the paper of Vaswani et al. for in detail explanations of
the Transformer architecture.

Q1:i,K1:i,V1:i = E(w1:i) + PositionalEncoding(w1:i)

H1:i = Transformer(Q,K,V)

Y1:i = H1:iM

(2.12)

An improvement of the last model (Vaswani et al., 2017) has been proposed by OpenAI
(Radford, 2018) where they doubled the amount of attention layers (from six to twelve) and
applied their model on a series of NLP downstream tasks as well as evaluating on several
language modelling benchmark datasets such as (Wang et al., 2018).

The two previous models have been applied to the BPE level and a similar model (Al-Rfou'
et al., 2018) has been applied on the character-level yielding near-state-of-the-art perplexity
results on enwik8 (Mahoney 2009) which is the �rst 108 bytes (compressed) of the English
Wikipedia dump on Mar. 3, 2006 6.

A masked language model (MLM) has been proposed by Devlin et al. (2018) which its goal is
not to model language speci�cally, whereas causal language models (CLM) previously intro-
duced do, but it has been shown by Wang and Cho (2019) that it is able to generate text as
a standard language model should.

5Some implementations use 1D convolutions which is similar to a feed-forward layer.
6https://cs.fit.edu/~mmahoney/compression/text.html

22

https://cs.fit.edu/~mmahoney/compression/text.html

A more sophisticated model was introduced by Dai et al. which handles longer sequences
of symbols by introducing a recursive mechanism. They achieved state-of-the-art results on
WikiText-103 (Merity et al., 2017b), enwiki8, text8, One Billion Word (Chelba et al., 2013)
and Penn Treebank (Marcus et al., 1994).

Finally, OpenAI demonstrated that training a large-scale unsupervised language model (Rad-
ford et al., 2019) on a huge body of text can generate coherent paragraphs of text and achieve
state-of-the-art performance on many language modelling benchmarks. This model can also
perform rudimentary reading comprehension, machine translation, question answering, and
summarization, all without task-speci�c training. Their model is largely inspired by the �rst
version of Radford (2018), using the same Transformer-Decoder architecture as Liu et al.. The
key idea is that they use a speci�c input �ag (called the delimiter) depending on the target
task.

2.4 Neural Language Generation

Language models can be used to evaluate the likelihood of a piece of text but they can also
be used to generate text, taking the form of generator or Decoders. In this section, we will
present two forms of generation, free form generation as well as conditioned generation. Free
form generation takes place when we want to generate open domain textual data. Usually,
we will use conditional language models, trying to achieve a particular task. Conditional
language models, as introduced in Section 2.1.1, play an important role in many downstream
tasks. We �rst present traditional free-form generation and then present di�erent ways to
condition a language model as well as di�erent conditioning sources.

2.4.1 Free Form Generation

One of the main utility of a language model is to generate text. As stated in Section 2.1.1,
language models are implicitly conditioned on the previous symbols. In a free-form generation
(which we call here unconditioned generation), the model uses only the previous k symbols to
generate the next one in contrast of using an additional conditioning input c which is discussed
next.

To begin, we start with a special START symbol that initiates the generation. If we want to
have a deterministic generation (which won't have any variety as it always returns the same
generated sentence), we take the next most probable symbol given the START symbol. On the
next step, we condition the model using the new symbol that we picked concatenated with
the START symbol. We can iterate through this loop until we hit the END symbol.

The fact that there is potentially an in�nity of ways to write things down makes the evaluation
of a generated textual utterance a hard challenge to automate. Indeed, a human could carefully
look at all the generations done by a language model but in practice it is not viable if we want
to rapidly iterate in the process of developing our language model.

Instead, we evaluate the trained model on a corpus that has been written by humans. As

23

stated in Section 2.2, we use the perplexity (see Equation 2.5) to assess the likelihood of a
corpus according to the trained model.

The best architecture at modelling language so far is GPT-2 (Radford et al., 2019), the second
version of the Generative Pre-Training method proposed by Radford. It achieves the best
perplexity on the Penn Treebank (Marcus et al., 1994), Enwiki8, Text8 andWikiText-2 (Merity
et al., 2017b) datasets.

In the next section, we will see other applications of language models and how we can evaluate
them di�erently with downstream tasks.

2.4.2 Conditioned Generation

Conditioned generation generally implies a downstream task; we condition our language model
not only on the previous symbols but also on additional information that serves for a speci�c
application. The performance of these language models is evaluated extrinsically by measuring
the performance of the overall architecture on the downstream task.

Conditioning is usually done by concatenating the input embedding of wt with a contextual
vector ct;

xt = E(wt)⊕ ct (2.13)

where xt now constitutes the input to the decoder.

We will then present a non-exhaustive list of applications relevant to this research proposal
where language models play an important role as well as how the conditioning information is
integrated (formerly how c is built) within the language model.

Machine Translation

Machine Translation (MT) is the task of translating a source sentence ss of length n to a
target sentence (in another language) st of length m. A standard neural approach uses a RNN
Encoder-Decoder architecture where the Encoder is an RNN (usually an LSTM) that encodes
ss into a �xed length vector called the context cs. The Decoder (which is another RNN) starts
generating the target sentence using cs as the initial hidden representation (hd

0) and the START
token until the END token is generated. This conditioning scheme works on short sequence but
fall short to handle longer ones.

As introduced in Section 1.3.2, Bahdanau et al. introduced a simple yet e�ective attention
mechanism which makes possible the processing of longer sequences.

More recently, Vaswani et al. introduced the Transformer architecture (see Section 1.3.3) in
the MT task, completely removing the recurrence scheme of the RNN-based language models.
Still, this model uses an Encoder-Decoder architecture where the Encoder encodes the source
sentence and the Decoder generates the target one. The conditioning is introduced using
�intra-attention�, where the keys K and values V come from the Encoder's source sentence

24

representation and the query Q changes during the generation, coming from the Decoder at
each time step.

We depict the process of decoding a target sentence given a source sentence in Figure ??. For
the sake of simplicity, we only illustrate the matrix computations of the di�erent inputs Q, K
and V in a one-layer Transformer architecture.

The inputs have three components. In this example, the query Qd coming from the decoder
consists of the �rst three words in the target sentence, <s>, Je and mange. Ke andVe represent
the source sentence, I eat an apple, which we want to translate. The �rst computation
results in the attention scores matrix A = QdK

>
e . This allows every word in the target

sentence pay attention to every other word in the source sentence to generate the next target
word. The result is then multiplied with Ve, yielding the query for the next layer Q′d or the
prediction of the next word if it is the last layer in the architecture.

In both cases (Bahdanau et al., 2014; Vaswani et al., 2017), their conditional language models
have been evaluated on the BLEU score using the newstest2015 from the Europarl corpus 7.

Generating Text from Structured Data

From now on we have seen language generation without much restriction on the content, only
conditioning on the previous symbols or a given theme. Generating text from structured data
(also known as data-to-text) is an application where a generator has to output pieces of text
where speci�c information needs to be said. This information could be represented as a
checklist or a table, for example.

Kiddon et al. proposed the neural checklist model, an RNN that models global coherence
by storing and updating an agenda of text strings which should be mentioned somewhere in
the output. The model generates output by dynamically adjusting the interpolation among
a language model and a pair of attention models that encourage references to agenda items.
Their model is conditioned on a speci�c goal g, an agenda of items that needs to be said
E = {e1, . . . , e|E|}, a checklist of soft records of what items have been used at−1, and the
previous k symbols encoded in the previous hidden state ht−1. The input to the neural
language model is the sum of the projected input (mainly for dimensional purposes). They
evaluated their model on a dataset of recipes where a model needs to write the steps to prepare
a dish given the ingredients. They used the BLEU score as well as human evaluation to assess
the quality of the generated recipes.

Moryossef et al. proposed a model that structures the information that has to be written
(planning) before generating �uent language describing that information (realization). The
planning model generates a plan that is used within a vanilla neural machine translation
(NMT) system (similar to Bahdanau et al. (2014)). The NMT system takes as input the
linearized plan and outputs a target sentence. Again, they evaluated their model with the
BLEU score and human judgment.

7https://www.statmt.org/europarl/

25

https://www.statmt.org/europarl/

Lebret et al. introduced a neural language model conditioned on data tables from Wikipedia
to generate biographical texts. They used a feed-forward neural language model (see Sec-
tion 2.3.1) that takes as input word embeddings concatenated with di�erent attributes em-
beddings referring to table elements similar to the notation introduce with the work of Ficler
and Goldberg (2017). When a speci�c word is not associated to a table element, they simply
used an empty embedding. Bao et al. performed the same task and basically used the same
model as Bahdanau et al. to pay attention to the di�erent table attributes during generation.
In both cases, they used the BLEU score to evaluate their architecture.

These data-to-text method will be further discussed in the second proposed research avenue,
Section 3.2.

Template Based Neural Language Generation

Template based language generation is essentially factored in two steps; the �rst step is to �nd
what to say, and then how to say it. It is more considered a paradigm of generation than a
task per se. The kind of architecture used often implies an Encoder-Decoder (Sutskever et al.,
2014).

Wiseman et al. used this technique on a data-to-text corpus, trying to generate sentences
given structured data from Wikipedia. They proposed a method that learns templates from
a training corpus. The RNN decoder is then conditioned on these learned templates to sort
of ��ll in the blanks� during generation. The decoder accepts as input the current symbol xt

and a current state zt that contains soft information about the templates learned from the
training set;

yt+1 = RNN(xt, zt;ht−1). (2.14)

The interesting feature of this approach is that the latent vector zt may generate several
symbols before changing, thus changing the template during generation. They showed that
the generation is much more interpretable than traditional neural language generators and
o�ers more controllability. They evaluated their model on BLEU for each of their experiment.

Peng et al. also applied this method on data-to-text and abstractive summarization. The
major di�erence with template-based generation is that instead of �lling in the blanks, they
use the full example extracted from the training to generate a new textual utterance that is
similar to it using the copy mechanism Gu et al. (2016), called exemplar. The trick behind
their approach is a reparameterization step; during the generation of a textual utterance, they
change the parameters of the decoder according to some examples extracted from the training
corpus. To illustrate their model, they use a simpler notation, the Elman network (Elman,
1990);

ht = tanh(Qxt + Ptht−1) (2.15)

26

where Q and P are dynamically computed given exemplars extracted from the corpus, thus
conditioning the generation. They evaluated the performance of their approach on ROUGE
for each dataset used.

Image captioning

Image captioning is the task of describing an image with textual information which implies a
language model. It thus combines two major arti�cial intelligence; computer vision and natural
language processing. A popular dataset used to tackle this problem is Microsoft COCO (Lin
et al., 2014), containing more than 300,000 images with 5 captions each.

You et al. proposed a model which uses a convolutional neural network that proposes concepts
extracted from the image that form the conditioning context to the recurrent neural language
model. They employ a semantic attention model to combine the visual features with visual
concepts in the decoder that generates the image caption. The encoded visual features are
then concatenated with the language model's input word. We illustrate the model in Figure 2.5
where the CNN architecture could be any pre-trained model such as He et al. (2015).

In the same line of research, Liu et al. used a region proposal convolutional neural network
such as Girshick et al. (2013) that proposes textual concepts extracted from the input image.
They used a self-attention mechanism (Vaswani et al., 2017) along with a recurrent neural
language model to generate the caption.

RNN

a

glass

RNN

glass

of

RNN

of

whisky

CNN

Figure 2.5 � An image captioning standard architecture. The extracted semantic representa-
tion of the image is concatenated at every time steps during the generation of the caption.

Dialogue Systems

Dialogue systems is the task of teaching a machine to converse naturally with humans. These
systems can roughly by categorized into 2 groups; non-task-oriented systems also known as

27

chat bots and task-oriented systems. The former one focus only on conversing with humans,
providing reasonable answers to open domain questions. Hence, the language model learns to
generate responses conditioned on the history of the dialogue. The latter one highly depends on
a knowledge base related to the task we are trying to accomplish (e.g. booking a restaurant).
This language model is thus conditioned not only on the history of the conversation but also
on structured data, similar to the data-to-text setting.

Wen et al. treat task-oriented dialogue as a sequence to sequence mapping problem similar to
Sutskever et al. (2014) augmented with the dialogue history and the current database search
outcome (either looking for food, phone number, address, etc.). They use an LSTM as the
generator that takes as input the last output token wt and an encoded representation of the
conditioning context ct called the �action vector�. They evaluated the performance of their
approach with the BLEU score as well as human evaluation.

Li et al. and Shao et al. proposed two models working on non-task-oriented dialogue systems.
Li et al. (2017) simply encoded the history of the conversation as a conditioning factor while
Shao et al. (2017) use an attention mechanism to generate longer and more diverse responses.

The Utility of Language Models

As we can see, language models are inherently present in several natural language understand-
ing tasks from the free-form generation to dialogue systems. Conditioned language models o�er
a better way to evaluate their performance since the quality of the generation can be assessed
according to the target task. While several advancements have been done regarding these
models, there is still plenty of work to do and we will tackle di�erent research avenues in order
to improve the generalization of pre-trained language models the next chapter.

28

Chapter 3

Research Avenues

In this chapter, we propose 3 main research avenues. The �rst one provides an algorithm to
transfer a pre-trained language model towards another language that potentially has fewer
resources to be trained on. The purpose of the transferred language model will be to generate
text in the target language by leveraging the syntactic and semantic capabilities learned by
the source neural language model. Since they are the actual state of the art in the textual
generation, we plan to use Transformer-based language models (Vaswani et al., 2017).

The second research avenue focuses on conditioning such Transformer-based language models.
So far, these models have only been used in a textual conditioning setting (up to a few hundred
symbols in most cases) in every natural language understanding tasks. We propose to extend
the conditioning of these models so that they can handle a greater diversity of conditioning
elements such as whole documents, images, and even structured data. The evaluation of
this new conditional neural language model architecture will be done using a domain-speci�c
dataset that comprises di�erent conditioning elements in the context of question answering.

The third research avenue focuses on grounding multilingual neural language models using
structured data. In fact, we want to study the learning dynamics of mBERT, the multilingual
version of BERT (Devlin et al., 2018) using a new cross-lingual analogy dataset. We propose a
four-way Siamese model trained on an analogy task which we plan to evaluate on a multilingual
benchmark (Hu et al., 2020).

In a matter of completeness of this proposal, we also include technical details in Appendix D
which introduce every tool and methodology we wish to use in order to conduct our experi-
ments.

3.1 Generalizing Neural Language Generation to Other

Languages

The web comprises an outstanding volume of textual data and we just see the rise of larger and
larger models such as ELMo (Peters et al., 2018), BERT (Devlin et al., 2018), TransformerXL
(Dai et al., 2019), GPT-2 (Radford et al., 2019), XLNet (Yang et al., 2019), and the recent

29

training scheme proposed by Facebook, RoBERTa (Liu et al., 2019b) just to name a few.

These pre-trained language models can be transferred to many natural language understanding
tasks, outperforming the previous state-of-the-art models. This is a turning point in the
natural language processing community, similar to the �ImageNet moment� we saw in the
computer vision community in the early 2010s. Peters et al. speci�cally demonstrated that
these pre-trained language models are inherently feature extractors with which a simpler
classi�er can be used to achieve a speci�c task (e.g. text classi�cation or sequence labelling).

While these models achieve outstanding performances on a speci�c language1, transferring
them to another language is still an active �eld of research. We thus present in the following
section the work that has been done to date related to the cross-lingual transfer of pre-
trained language models. We further propose to explore the cross-lingual transfer of pre-
trained language modelling speci�cally for causal language modelling (CLM) without or
with minimal supervision, where the focus is to improve language modelling, hence language
generation, on low-resource languages.

3.1.1 Related Work

Transferring a neural language model towards another language's speci�c task has only been
merely explored recently. A method proposed by Lample and Conneau (largely inspired by
Klementiev et al. (2012)) jointly learns cross-lingual representations in individual languages.
Concretely, they have a language model that is trained simultaneously on two di�erent lan-
guages which we call the source languages. This model is then transferred towards a third
target language for �ne-tuning to accomplish di�erent natural language understanding tasks
such as text classi�cation or sequence tagging. Their model requires a large amount of data
in all languages to achieve interesting results in the downstream tasks.

One of the most promising architectures to date that achieved interesting results on the cross-
lingual transfer of neural language models is without a doubt Multilingual BERT (Devlin et al.,
2018). The analysis done by Pires et al. shows that a Multilingual BERT model (mBERT)
pre-trained on 104 di�erent languages with standard BERT's training objectives can generalize
to several other languages in a somewhat �Zero-Shot� setting (without further training of the
model on the downstream task's data). They evaluated the transferred architecture on two
di�erent sequence tagging tasks; Named Entity Recognition (NER) on two datasets (Sang,
2002; Sang and Meulder, 2003, CoNLL-2002 and CoNLL-2003 containing Dutch, Spanish,
English, and German) and Part of Speech Tagging (POS) using 41 languages of the Universal
Dependencies dataset (Nivre et al., 2016).

However, Virtanen et al. and de Vries et al. showed that for a speci�c language like Finnish or
Dutch, mBERT is not enough, necessitating a monolingual model for the particular classi�ca-
tion tasks. While mBERT works well on several classi�cation tasks and languages, Rönnqvist
et al. demonstrated that under really simplistic con�gurations mBERT falls short to generated
meaningful short pieces of textual utterances, which strengthen our point to better explore

1Mainly English but we now see pre-trained models in other languages too (Martin et al., 2019)

30

cross-lingual neural language generation.

The architecture from which we inspire ourselves and motivates this research proposal is the
one proposed by Artetxe et al.. Based on the �ndings of Pires et al. (2019), they propose to
transfer a monolingual neural language model (i.e. English BERT) towards another completely
di�erent language. Their approach does not rely on a shared vocabulary nor joint training.
They showed that deep monolingual models learn some abstractions that generalize across
languages. They had competitive results with mBERT on standard cross-lingual classi�cation
benchmarks. However, their model hasn't been applied to neural language generation, mainly
due to the nature of the transferred model (BERT used the MLM objective) and still requires
a substantial amount of training data.

To date, cross-lingual transfer of neural language model has mainly been applied to classi�ca-
tion tasks, using BERT as the base architecture where its training objective (MLM) is not well
suited for text generation. We thus propose to use pre-trained models that are well suited for
natural language generation like GPT-2 (Radford et al., 2019) or TransformerXL (Dai et al.,
2019) that uses a proper training objective (CLM), which we detail in the next section.

3.1.2 Research Proposal

Cross-lingual transfer for neural language as yet to be explored. Previous methods (Rönnqvist
et al., 2019) only investigated textual generation using a pre-trained multilingual model that
is trained with the Masked Language Modelling (MLM) objective (Devlin et al., 2018) with
no success. We come to the conclusion that there is inevitably a need to investigate the
transferability of neural language models architectures that have been speci�cally designed to
generate text (Radford et al., 2019; Dai et al., 2019) using the Causal Language Modelling
objective function (CLM).

In a matter of environmental e�ciency, computational and textual resources, we propose
a model transfer method designed to require minimal to zero supervision whereas we only
use independent pre-trained modules to satisfy the task of cross-lingual neural generation of
text. The proposed architecture will be presented in the next sections but we will introduce
beforehand how we are going to use a word-to-word translation model as previously seen in
Section 1.2.1 which constitutes an important building block of our proposed methods.

Word-to-Word Translation

We introduced in Section 1.2.1 how one can perform word-to-word translation using two sets
of pre-trained word embeddings. We hereby assume that in our architecture we have a set of
pre-trained word embeddings Et ∈ R|Vt|×n in the target language such as the ones provided
by Facebook 2 and that we have access to the source neural language model's embeddings
Es ∈ R|Vs|×m. We also need a word-to-word dictionary (also provided by Facebook3). Given
these resources in hand, we can learn a mapping (called the translation layer) from the source

2https://fasttext.cc/docs/en/crawl-vectors.html
3https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries

31

https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/facebookresearch/MUSE##ground-truth-bilingual-dictionaries

to the target language Ts→t ∈ Rm×n and, vice versa, a mapping from the target language
towards the source language Tt→s ∈ Rn×m.

Cross-Lingual Language Model Transfer

Given a standard pre-trained monolingual neural language model, LM, we hereby lay the algo-
rithm needed to model a particular target language, hence to estimate the probability of the
n+ 1 word given a sequence of n previous words;

Standard monolingual neural language models take as input a list of symbols (e.g. words)
x1:n = [w1, w2, . . . , wn] where each symbol are converted to their respective embedding using
the embedding matrix E ∈ R|Vs|×l which give W ∈ Rn×l, the words input matrix. This input
matrix is then fed to a LM that outputs a hidden state, h ∈ Rl.

In some cases, like with the Transformer architectures, a list of n hidden states are generated,
H ∈ Rn×l. These n hidden states are then multiplied by the tied transposed embedding table
in order to obtain a score for each word in the vocabulary according to the i-th hidden state;
HE> = P̂ ∈ Rn×|Vs|. By performing the argmax operation on the columns, we thus obtain
the sequence of estimated next words, p̂2:n+1 = [ŵ2, ŵ3, . . . , ŵn+1].

In this setting, we assume that we have access to a pre-trained monolingual neural language
model such as Dai et al. (2019) that is able to generate natural language based on an embedding
table Es ∈ R|Vs|×n that is tied to the last layer of that same architecture as introduced in
Section 2.3.1 which we de�ne as M ∈ Rn×|Vs| = Es>. This mapping layer M is used to obtain
a probability distribution for the next word over the vocabulary given a history of symbols.

In this context, we de�ne the pre-trained language model's core component as a function
that takes as input a list of i word embeddings and outputs a list of i hidden representations;
C : W ∈ Ri×n → H ∈ Ri×n. Usually, in order to retrieve the prediction of the next words in
the sentence, we simply multiply H with the mapping layer M which gives us the following
language model function L : C(W)M → Ps ∈ Ri×|Vs|. Ps constitutes the list of predictions
of all the words in the sentence in the source language.

We thus propose to bypass the source mapping layer M and directly multiply H with a
translation layer Ts→t and the target embedding table Et which will give us Pt ∈ Ri×|Vt|.
Since Ts→t has been trained so that eti ≈ esiTs→t, we can assume that HTs→tE

t will produce
the list of most probable next words translated in the target language, Pt.

This proposal o�ers a Zero-Shot 4 transferred language model Lt : C(W)Ts→tE
t that uses a

core component of a pre-trained source language model C, takes as input a list of embeddings
in the source language W and generates a list of words5 in the target language Pt. Figure 3.1
depicts the overall architecture. It is important to note that this architecture is fully derivable
and can thus be �ne-tuned on the target language in order to obtain better results. This
training scheme will indeed be studied during the experimentation.

4This setting is Zero-Shot in the sense that the we do not train or �ne-tune the pre-trained language model
5We assume that we begin the sentence in the source language with the start token <S>. This way, we will

in fact generate all the next words in the target sentence.

32

[w1, w2, …, wn]

Source
Language

Model

[w1, w2, …, wj]

source language
words

target language
words

source language
predictions

target language
predictions

Wn x m

Embedding
Layer

Size |Vs| x m

Hn x m

Transposed, Tied
Embedding Layer

Size m x |Vs|

Pn x |Vs|

Embedding
Layer

Size |Vt| x k

Wj x k

Mapping Layer
source-target

Ŵj x m Ĥj x m

Mapping Layer
target-source

Hj x k

Transposed, Tied
Embedding Layer

Size |Vt| x k

Pj x |Vt|

Figure 3.1 � The overall architecture of the proposed cross-lingual neural language model for
textual generation. The gray area is a standard monolingual language modelling work�ow.
We thus propose to transfer a source monolingual language model towards the target language
using two mapping layers, from source to target and target to source.

In order to evaluate our transferred architecture, we will proceed into an intrinsic and extrinsic
evaluation. Indeed, in every transferred language, we can use the perplexity to evaluate the
performance of our model. Since perplexity scores are inherently incommensurable between
di�erent languages, we will compare the performance of our model with robust baselines
(Merity et al., 2017a) trained only on the target language's dataset as well as multilingual
architectures such as XLM (Lample and Conneau, 2019). There are actually 2 datasets on
which we intend to perform the evaluation, the Parallel Universal Dependencies dataset (Nivre
et al., 2016) as well as the Europarl dataset (Koehn, 2005). To extrinsically evaluate the
relevance of the generated text by our transferred model, we propose to manually analyze
sentences in languages where the author is at ease, which are French, English, and Spanish.

Going Further

A fundamental problem lies in the proposed version of our model; since word order may
di�er from one language to another (e.g. from English to German), a simple word-to-word
translation won't su�ce in order to obtain the desired results in most target languages. Take
for example the following English sentence: �Erik is coming home on the train today.�.
The word order in this case is characterized by the place, the manner and then the time. In
German, it is the exact opposite: �Erik kommt heute mit der Bahn nach Hause.� which
literally translates to �Erik is coming today on the train home� in English and barely

33

makes sense. We thus proposed to improve our architecture by introducing a �positional aware
layer�. This layer could mitigate the word order issue that exhibits several language pairs and
yield better results on the e�ective target language. The layer as depicted in Figure 3.2 will be
trained to reorder words from a source language sentence given shu�ed words, largely inspired
by the work done by Vinyals et al. and Andrychowicz and Kurach.

glass of whisky AShuffled
words

Positional Layer

glassA whiskyofRe-ordered
words

Figure 3.2 � A positional layer that learns how to properly reorder words in a sentence.

While the formal de�nition of the positional aware layer is not fully settled, we de�ne the
problem source embeddings reordering as follows;

1. Given a sequence of n shu�ed source word embeddings xs
1 . . .x

s
n with the associated

correct ordering y1 . . . yn;

2. Use the Positional-Layer to �nd the best ordering given the shu�ed sequence of word
embeddings ŷ1 . . . ŷn;

3. Record the permutations that have been predicted by the Positional-Layer for the re-
ordering in the target language.

Another problem will arise when comes the time to transfer an English neural language model
towards a morphologically rich language. The number of words used to express a given thought
may di�er from one language to another. Take for example this simple English sentence:
The boy plays with the girl. Literally translated into Danish, this sentence has 4 words
instead of 6: Drengen leger med pigen. The words �Drengen� and �pigen� are characterized
by the su�x �en� which literally translates to �The boy� and �the girl�. While a word-to-word
translation from Danish to English may result in the following plausible sentence: �Boy plays
with girl�, it does not fully capture the fact that there is a boy that plays with a girl.

As stated in Ruder et al. (2018), words also combine in non-compositional ways to form multi-
word expressions like �kick the bucket� or �woke up� where the meaning cannot be derived

34

from standard word representations of their constituents. Multi-word expressions are still a
huge challenge in the monolingual setting and have been barely studied with cross-lingual
architecture. Since this problem is challenging and under-explored, we see a huge research
potential into it.

3.2 Transferring Neural Language Models for Multimodal

Conditional Textual Generation

In this proposal, we plan to tackle multimodal neural language modelling using an insurance
dataset that is provided by a private partner. The dataset comprises email conversations
between insurance brokers and underwriter agents. The idea here is to facilitate the work
of the underwriters by suggesting or pre-generating an answer to the broker by leveraging
contextual information.

These conversations contain textual data (dialogues) but may contain as well images, PDF
forms or even scanned documents. Speci�c information related to the client's pro�le who is
the subject of the exchange can even be leveraged to guide the language model as well as the
company's internal business rules. For this project, we thus want to obtain a neural language
model that can generate a response to the broker given the context that we have in hand;

1. The whole history of the conversation.

2. Were there any pictures/forms sent in the incoming message or required for the case?

3. What is the actual status of the broker's client?

4. Is there any speci�c business rules that need to be taken into account?

A typical email exchange is depicted in Appendix C. From this conversation, we can clearly see
that besides the history of the discussion, a dialogue system that aims to generate a response
to the broker will need more contextual information. The model should have 2 main abilities;
answer a question from the broker and ask for speci�c information. The case in Appendix C
demonstrates that the underlying language model will need to have access to the client's
pro�le, to ask for missing information like the name and address of the client. It will also need
to have access to the business rules of the company whereas if the dwelling becomes vacant,
the broker needs to �le up a Vacancy Questionnaire for the corresponding client.

In this context, we wish to explore conditional neural language generation. Indeed, we wish to
generate the agent's response given the history of the exchange also leveraging the attachments
of the di�erent emails as well as the client's pro�le and speci�c business rules.

The dataset that we have in hand is composed of around 600,000 email exchanges, each
comprising in average 3 images and 0.5 PDF form. Textual preprocessing needs to be done
on the emails to extract and �lter email headers, signatures, and replies.

35

3.2.1 Related Work

We show in Figure 3.3 that simply using a pre-trained instance of GPT-2 to generate an
answer to the broker is not suitable for our needs6. Without the context (e.g. the client's
pro�le and business rules associated to this speci�c case), the model is good for nothing in
terms of generating a proper response impersonating the insurance company's underwriter. Of
course, we could �ne-tune GPT-2 on our conversation dataset but still contextual information
won't be leveraged in order to generate a useful answer to the broker.

Figure 3.3 � An example generation from the original GPT-2 model given a question asked
by the broker. We can clearly see that without the context (client pro�le and business rules
associated to this speci�c case), the model is good for nothing in terms of generating a proper
response impersonating the insurance company's underwriter.

As discussed in Section 1.3.2, it is possible to obtain a representation vector for the history of
the conversation using a language model. It is also possible to obtain a representation vector
of an image using a convolutional neural network such as a ResNet (He et al., 2015) trained
on ImageNet. The di�culty of this problem lies in obtaining the vectorial representation of a
form (is it well �lled or not), the client's pro�le (which takes the form of structured data), the
business rules, and �nally �nd a way to wisely combine all this information in order to guide
the textual generation of a pre-trained language model.

6The original answer from the underwriter can be found in Appendix C

36

We introduced conditional neural language models in Section 2.4.2 that were mostly RNN-
based models. These models are conditioned on di�erent �modalities� such as text, images
and structured data.

A line of research that is currently under-explored with the rise of the state-of-the-art transformer-
based neural language model is indeed themultimodal aspect of such architecture; combining
di�erent types of inputs (images, structured data, audio, etc.) to generate textual utterances.
The literature also refers to this �eld of research as grounding natural language and we thus
wish to explore this �eld speci�cally towards transformer-based architectures.

Recently, a Transformer-based model has been proposed by Salesforce (Keskar et al., 2019),
CTRL, which aims to control the generation of textual utterances. The mechanism employed
relies on control codes that govern style, content, and task-speci�c behaviour. These control
codes are basically special tokens that are prepended to training sequences of raw text. Still,
this model cannot take into account di�erent types of conditioning elements as we wish to do
with our speci�c dataset and requires a huge amount of training data since it is composed of 1.6
billion parameters. Needless to say, that this architecture also requires substantial computing
power.

Solutions proposed so far not only needs to modify the pre-trained architecture but often need
a �ne-tuning procedure or even a full training of the said architectures for conditional language
modelling.

We thus propose to explore another form of conditioning that are often called adapters

(Rebu� et al., 2017; Houlsby et al., 2019) which reduce the computational resources needed
for multimodal neural language modelling with conditioning elements never seen to date du
to the nature of our dataset.

3.2.2 Research Proposal

It is clear to see from Figure 3.3 that we cannot use a pre-trained language model to generate
a plausible answer. We either have to �ne-tune it or condition the model in some way to
generate meaningful answers to the broker.

This research avenue focuses on two main challenging aspects. At �rst, we need to �nd a
way to encode the contextual information that is not in textual form. Indeed, actual pre-
trained language models take as input a list of symbols or tokens which acts as the �textual
conditioning�. We thus need to �nd a way to encode images, PDF forms, client pro�le, and
business rules in order to combine their respective representation with the history of the
conversation.

Furthermore, we wish to minimize the needed resources in order to achieve a decent textual
generation. We thus consider a pre-trained Transformer-based language model (Radford et al.,
2019) as much as a black box as possible which will alleviate the need for �ne-tuning or a
complete training of the architecture.

37

Encoding Contextual Information

We hereby lay down three di�erent types of contextual information as well as how we plan to
encode them in order to be used within our conversational language model.

Images. As a baseline, we plan to use a convolutional neural network such as He et al.
(2015) trained on the ImageNet dataset (Deng et al., 2009). With this pre-trained network,
we can obtain a vector representation given an image. However, we would prefer to obtain the
predicted class of the image amongst the 1,000 classes available in the architecture so that we
can directly input this class (i.e. word) as a feature to the language model. Furthermore, as
introduced in Section 2.4.2, such a pre-trained neural network has already been used to obtain
an image's vectorial representation in order to generate the caption that describes it (You
et al., 2016). The idea in our case is not to obtain an exhaustive description of the di�erent
images that may be attached to an email but rather obtain a bag of keywords that mostly
summarizes all images (e.g. an image containing a cat could be described by the following
keywords; cat, feline, grumpy, etc.).

Client Pro�le and PDF Forms. An insurance company's underwriters have to make sure
that a client's pro�le is properly �lled. This means that for every mandatory �eld that would
have been omitted in his pro�le, we would simply encode the �eld name (e.g. executor's
full name and address) as a bag of words to guide the language model into asking for these
elements in the conversation. For example, if the client's �rst name is missing, it will be
encoded as a special token as follows: First_Name:Empty. It will also be relevant to encode
already collected information to provide more context to the language model; if the client's
�rst name is Nicolas, it will thus be encoded as follows: First_Name:Nicolas. The same
goes procedure applies to �elds within PDF forms. This way of encoding di�erent is from
what has been introduced in Section 2.4.2 due to the nature of the model we wish to use, the
Transformer-based language models.

Business Rules. Insurance company's processes are supported by many business rules that
ensure a good cohesion between the di�erent departments. An example of such a business
rule can be drawn from the Appendix C: In order to set the dwelling vacant, a Vacancy
Questionnaire must be �lled out with associated photos for review. This information can
indeed be used to guide a generative conversational agent to ask for this speci�c information
given the context. Using such a knowledge base to ground a language model is further
explored in Section 3.3.

Conditioning Pre-Trained Language Models for Generation

Dathathri et al. proposed an interesting way to control attributes of the generated language
for a given Transformer-based language model architecture. Inspired by Plug & Play Gener-
ative Networks from Nguyen et al. (2016) used to generate images with di�erent attributes,
they introduce the Plug & Play Language Model for controllable text generation. We are par-
ticularly interested into this Plug and Play architecture since it circumvents the catastrophic
forgetting that could happen to the pre-trained language models, as illustrated by Houlsby
et al. (2019) and Wang et al. (2020).

38

Their architecture is composed of a pre-trained language model and one or more simple at-
tribute classi�ers that guide the generation without any further training of the language model
(which can be really expensive). Their attributed classi�ers actually only handle textual data.
The main idea is that these simple attribute classi�ers are used to shift the output distribution
from the pre-trained model over the vocabulary. We borrowed Figure 3.4 from the original
paper which properly illustrates the underlying process of steering the generation towards a
speci�c topic using an attribute model.

Figure 3.4 � Illustration of a plug and play attribute model borrowed from the original paper
(Dathathri et al., 2019).

These models are often called �plug and play� models since they only use the pre-trained
architecture without the need for retraining it. The smaller attributes models such as a simple
bag-of-word model or discriminative neural network are used to update the pre-trained model's
latents using negative gradients.

More precisely, given an attribute a = positivity, an attribute model is designed to increase
the likelihood p(x|a) of the passage x having the desired attribute a by updating the latents H
of the Transformer-based language model, formulating the attribute model as follows; p(a|H).
The internal latent representations of the language model are updated using gradients from
the attribute model, noted Ht = Ht + ∆Ht where ∆Ht are the gradients received from the
attribute model. Their attribute model is thus formulated as follows: p(a|Ht + ∆Ht)

7.

As previously stated, this model has been used solely with textual attribute models. We
thus propose to handle other types of modalities by encoding them in a vector representation
used to shift the output distribution of the pre-trained language model. Based on the work
of Dathathri et al., we plan to extend the formulation of attribute models to a vector space
representation;

p(v|Ht + ∆Ht) (3.1)

7Note here that they iteratively update ∆Ht (around 3 to 10 times) in order to obtain the �nal conditioned
output distribution over the vocabulary. At the initial time step, ∆Ht = 0, resulting in the instance of the
original attribute model p(a|H)

39

such that v is a vector representation obtained by the methods exposed in Section 3.2.2.
This results in a really interesting architecture that worth exploring further in order to design
attribute models that can handle structured data such as images, the client's pro�le or the
business rules which our dataset inherently exhibits.

However, we introduced in Section 3.2.2 several types of contextual information that may need
to be taken into account for the language model in order to provide relevant answers (or even
questions!) to the corresponding broker, yielding many possible representations of v.

This is why we want to explore conversation planning which could potentially help the conver-
sational agent to assign a ranking to the di�erent topics that must be addressed based on the
contextual information. As introduced in Section 2.4.2, Kiddon et al. (2016) and Moryossef
et al. (2019) speci�cally tackle this issue and we wish to explore how these architectures could
be incorporated into a transformer-based neural language model.

Suppose here that we have two vector representations contextualizing the conversation; the
client's pro�le (v1) and an image (v2). We thus propose the following vectorial attribute
model;

p(vi|Ht, [v1,v2, . . . ,vt−1]) (3.2)

where vi is the i-th attribute vector in the set of possible attribute vectors V, Ht encodes
the history of the whole conversation and [v1,v2, . . . ,vt−1] contains the history of attribute
vector representations used so far in the generation 8. The attribute vector that has the highest
probability could then be used to update the transformer's latents at time step t;

vt = argmax
vi∈V

(
p (vi|Ht, [v1,v2, . . . ,vt−1])

)
(3.3)

3.3 Grounding Multilingual Neural Language Models Using

Structured Data

In this avenue, we move away from language generation but we continue to study pre-trained
transformer-based language models. We speci�cally study the multilingual version of BERT
(Devlin et al., 2018), mBERT, which proved to perform well on a wide variety of sequence
tagging and text classi�cation tasks (Pires et al., 2019; Lample and Conneau, 2019).

To this end, we wish to evaluate the global consistency of mBERT, per language, using a
new cross-lingual analogy dataset 9 extracted from Wikidata 10. We thus want to perform
multilingual grounding of mBERT on these extracted analogies in order to understand the
model's learning dynamics.

8We could in fact only use a truncated list of attributes.
9A special thanks to Anders Sandholm for the extraction.

10https://www.wikidata.org/wiki/Wikidata:Main_Page

40

https://scholar.google.com/citations?user=ZYcTqF8AAAAJ&hl=en
https://www.wikidata.org/wiki/Wikidata:Main_Page

3.3.1 Related Work

Distributional (Mikolov et al., 2013b; Pennington et al., 2014) and contextualize (Peters et al.,
2018; Devlin et al., 2018) word representations are obtained from a model trained in an
unsupervised manner on a large textual corpus.

Also known as �semantic specialization�, language grounding's goal is to provide language
word representations that complies to a set of semantic rules. These rules are usually drawn
from a di�erent normalized data source than the one the model has been trained on such
as Wikidata. As an example, one may want to specialize word representations to capture
synonymy-antonymy (Mrksic et al., 2017), phenomena poorly captured by a vanilla distribu-
tional model such as skip-gram.

Neural language grounding has been studied since the rise of distributional representations
induced from a neural architecture (Mikolov et al., 2013b; Pennington et al., 2014). In the case
of distributional models, semantic specialization methods usually fall into two main categories:

1. Those that modi�es the distributional model in order to handle both distributional
knowledge and lexical information (Liu et al., 2015; Schwartz et al., 2015; Ono et al.,
2015);

2. Those that inject lexical information within trained representations induced from the
distributional models (Rothe and Schütze, 2015; Mrksic et al., 2016, 2017; Vulic et al.,
2017; Vuli¢ and Mrk²i¢, 2018).

These models are usually evaluated in an analogy detection task (detailed in Section 1.2),
synonymy-antonymy and in hypernymy-hyponymy detection setting, just to name a few. To
date, specialization methods have been studied in a cross-lingual setting where the original
distributional models were monolingual (Ponti et al., 2018, 2019) and the specialization was
done across languages.

In this proposal, we plan to inject cross-lingual lexical information within a pre-trained cross-
lingual transformer-based language model, mBERT (Devlin et al., 2018), using a new specially
curated multilingual analogy dataset. This proposal di�ers from previous work in two main
aspects;

1. Using pre-trained cross-lingual contextualized representations;

2. Using a cross-lingual analogy dataset extended with entity metadata.

We thus detail next these two speci�c aspects which we think make this research avenue really
appealing.

41

3.3.2 Research Proposal

As previously mentioned, in this proposal we wish to study the learning dynamics of mBERT,
the multilingual version of BERT (Devlin et al., 2018) using a new cross-lingual analogy
dataset. We propose a version of an analogically specialized mBERT as well as a baseline
using multilingual Fasttext's embeddings 11 in order to compare our proposed architecture.

Dataset

Using the Wikidata knowledge base 12, we wish to extract relevant analogies in order to train
and validate pre-trained word or phrase representations.

In Wikidata, entities are identi�ed by a unique Q-Code and properties (P) characterize links
between a pair of entities. For example, Paris (Q90) is related to France (Q142) via the
property Capital (P36). Similarly, Berlin (Q64) is related to Germany (Q183) via the same
property (P36). This allows us to create an analogy in that the source entity Paris should
relate to the target entity France as Berlin relates to Germany.

In general, for a given property Pi, we would extract an analogy (Qs
1, Q

t
1, Q

s
2, Q

t
2) if both triples

(Qs
1, Pi, Q

t
1) and (Qs

2, Pi, Q
t
2) are in the Wikidata knowledge base.

Wikidata o�ers its knowledge base in various languages. We thus propose to extract a large set
of analogies across languages which constitutes, to the best of our knowledge, the �rst cross-
lingual analogy dataset. We present in Table 3.1 the property is part of that characterizes
two entities of type unit of time in di�erent languages that compose Wikidata.

Lang. Source Target

da time → døgn døgn → uge
de Stunde → Tag Tag → Woche
en hour → day day → week
es hora → dia dia → semana
� tunti → vuorokauski vuorokauski → viiko
fr heure → jour jour → semaine
it ora → giorno giorno → settimana
nl uur → dag dag → week
pl godzina → dzie« dzie« → tydzie«
pt hora → dia dia → semana
sv timme → dygn dygn → vecka

Table 3.1 � Example pairs of the relation unit of time (Q1) → is part of → unit of time (Q2)
in the di�erent languages that compose our dataset. Each row contains a source (S) and a
target pair (T).

In some cases, the entities are composed of only one word (has illustrated in Table 3.1)
which leaves a contextual model like BERT with too few information in order to generate a

11https://fasttext.cc/docs/en/crawl-vectors.html
12https://www.wikidata.org/

42

https://fasttext.cc/docs/en/crawl-vectors.html
https://www.wikidata.org/

meaningful representation for a given entity. To circumvent this, we propose to use longer
aliases from Wikidata to replace the words before the vectorization.

Consider the same entity unit of time and characterized by the property is part of. We can
then instantiate this analogy in French, whereas jour → is part of → semaine as to semaine

→ is part of → mois. BERT have little information in order to deduce this analogy. We can
then use the description of the entities provided by Wikidata 13 which describes a jour and
expand the entities as jour, unité de temps de 24h, semaine, unité de temps de 7 jours and
mois, unité de temps, yielding the following augmented analogy;

jour, unité de temps de 24h → is part of → semaine, unité de temps de 7 jours

as to
semaine, unité de temps de 7 jours → is part of → mois, unité de temps

The new multilingual analogy dataset that we propose here is composed of 11 languages and
a total of 78 thousand pairs.

Grounding mBERT

At �rst, we propose to show that multilingual BERT � and similar pretrained language en-
coders representing multiple languages in the same vector space - are comparatively worse at
capturing relationships between words that are further apart in languages with less training
data.

To validate our hypothesis, we will use the analogy dataset previously introduced to perform
analogy detection. Analogy detection can be seen as a retrieval task such that given two pairs
(Qs

1, Q
t
1) and (Qs

2, Q
t
2), we want to retrieve Qs

2 by using Qs
1, Q

t
1 and Q

t
2.

We can obtain the vectorial representation of an entity Q by simply feeding the tokens as an
input;

v = mBERT([t1, t2, . . . , tn]) (3.4)

where v ∈ Rd and [t1, t2, . . . , tn] would be the tokenized representation of an entity, like Barack
Obama, the 44th president of the United States for example.

Given the corresponding vector representations of each entity in our dataset, V ∈ Rm×d,
we can use the o�set trick proposed by Mikolov et al. to get an estimation of the vectorial
representation of Qs

2, vQs
2
;

v̂Qs
2

= vQs
1
− vQt

1
+ vQt

2
. (3.5)

We thus propose to implement a four-way Siamese BERT architecture based on Sentence-
BERT (Reimers and Gurevych, 2019) to ground mBERT on Wikidata. Since every analogy

13https://www.wikidata.org/wiki/Help:Description/fr

43

https://www.wikidata.org/wiki/Help:Description/fr

in the dataset is o�ered in 11 di�erent languages, we can then assess the multilinguality of
mBERT by �ne-tuning it on the whole dataset and evaluating it per language.

We can train this proposed architecture by using an objective function that tries to bring
together the estimated and the true vectorial representation of Qs

2 using the cosine distance;

J (Θ) =
1

N

N∑
n=1

cosine_distance(v̂n,vn) (3.6)

where Θ are the parameters of mBERT, vn = vQs
2
and given we have N analogies in our

training set. This �rst objective function is said to be the explicit one.

We also propose a more contrastive objective function, leveraging negative samples (see Equa-
tion 3.7). The idea is to use a cross-entropy loss to distinguish between correct pairs of entities
and randomly constructed ones;

J (Θ) =
1

N

N∑
n=1

log(1 + e−cos(v̂n,vn)
)

+
k∑

j=1

log
(

1 + ecos(v̂n,vj)
) (3.7)

where the k negative samples are drawn randomly and cos is simply the cosine similarity.
However, in order to make the contrastive loss converge more rapidly, we may have to test
di�erent sampling functions based on type constraints.

For instance, given the following analogy of languages and their corresponding writing systems;
runes →Old Norse as cuneiform → Akkadian. A randomly sampled negative example could be
runes → Old Norse as Britney Spears → Akkadian. However, the property type of cuneiform
and Akkadian is P407 (language of work name) while Britney Spears of type Q5 (human) is
not characterized by this property. It would make more sense to draw an entity of the same
type (Q8192, writing systems) that allows this property type such as kanji for example.

To evaluate the performance of our proposed architecture, we will rely on the accuracy metric.
In order to compute it, we assume that we have the vectorial representation of every entity in
our dataset, V ∈ Rm×d; we can compute the accuracy as follows;

s← v̂Qs
2
Ṽ>

p← argmax(s) = h(Qs
2)

accuracy← 1

N

N∑
n=1

pn

(3.8)

where Ṽ = V \
{
vQs

1
,vQt

1
,vQt

2

}
and h(·) returns the index of a given entity in matrix V.

In order to compare our proposed model, we will use Fasttext cross-lingual word embeddings
as a baseline on the same analogy task. Since most of our analogies are composed of multi-

44

word expressions, we propose to take the mean of Fasttext's embeddings for a given entity as
follows;

vQ =
1

|Q|

|Q|∑
i=1

wi (3.9)

where |Q| is the number of words composed in entity Q and wi is the Fasttext's embedding
of the i-th word in the entity Q.

Finally, we wish to evaluate extrinsically our proposed mBERT grounded architecture on
the XTREME dataset (Hu et al., 2020) and on the Universal Dependencies dataset within a
Named Entity Recognition sequence tagging task.

45

Conclusion

In this research proposal, we introduced di�erent ways to leverage pre-trained neural language
models with minimal resources and e�ort. We proposed three research avenues with a strong
innovative potential. We have a special attention towards scenarios with limited resources,
like underrepresented languages. We hope that the proposed architectures will stimulate the
scienti�c community towards this direction.

By transferring large pre-trained neural language model, we avoid the cost associated with
the training procedure (dataset and computational power) which can cost several thousand
US dollars. These substantial savings will facilitate the use of these high-energy models.

It goes without saying that there is an environmental consideration that is too often neglected
when it comes to training such powerful models. Indeed, as presented by Strubell et al., the
complete training of one of the previous models (with research hyperparameters) produces as
much CO2 emissions as the life of 6 conventional cars. This is enormous. We therefore have
every interest to take advantage of the training that has been done previously for the bene�t
of other languages hence transferring this learning to other contexts.

46

Appendix A

Long-Short-Term-Memory Networks

This recurrent cell comprises 4 sub-networks and 3 gates called the forget, input and output
gates. The internal computations of the cell are exposed in Equation A.1

it = σ(Wiixt + bii + Whiht−1 + bhi)

ft = σ(Wifxt + bif + Whfht−1 + bhf)

gt = tanh(Wigxt + big + Whght−1 + bhg)

ot = σ(Wioxt + bio + Whoht−1 + bho)

ct = ft × ct−1 + it × gt

ht = ot × tanh(ct)

(A.1)

It is important to note that the weights Wi_ ∈ Rj×l and Wh_ ∈ Rl×l are related to the input
and the hidden state respectively and W_i, W_f , W_g, W_o are associated to the input
gate, forget gate, update layer and output gate respectively. These are all sets of di�erent
parameters of the recurrent cell. The same pattern also applies to the biases. We depicted
there LSTM architecture in Figure A.1 which is highly inspired by Christopher Olah's blog0.
Cho et al. introduced a variant of this model, the Gated Recurrent Unit (GRU) reducing the
number of sub-networks to three.

0http://colah.github.io/posts/2015-08-Understanding-LSTMs/

47

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

⨯ ⨯
tanh

tanhσ σ σ

xt

ht

⨯ ⨯

⨯

tanh

tanhσ σ σ

⨯

xt-1

ht-1

⨯ ⨯

⨯

tanh

tanhσ σ σ

⨯

xt+1

ht+1

⨯ ⨯

otgtitft

ct

Figure A.1 � A Long-Short-Term-Memory Neural Network. The four boxes in the bottom
of the �gure represents the four neural layers. The circles are pointwise operations. We also
depicted where the di�erent outputs (ft, it, gt, and ot) as well as the cell state ct stands in
the architecture.

Figure A.2 � The behaviour of an attention mechanism in the machine translation task. This
�gure is taken from the really interesting post 1 on augmented RNNs by Chris Olah and Shan
Carter (Olah and Carter, 2016) which is under the licence CC BY https://creativecommons.

org/licenses/by/2.0/.

48

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

Appendix B

Language Models Training Details

When comes the time to concretely train a neural language model, there are lots of hyper-
parameters and methods to consider. These methods are more often than not poorly docu-
mented in conference papers and we will hereby explicitly expose any internal parts of the
training details of a neural language model.

We conclude this appendix by presenting di�erent hyperparameters that can be tuned in order
to produce coherent generated text.

The training loop

Language modelling is exactly the same as a classi�cation problem; given some input x, what
is the probability of obtaining class yi, the next word. In this section, we assume that the
number of classes is the number of symbols in the vocabulary, |V|, and that a language model
is trained with Maximum Likelihood Estimation (MLE). MLE is usually estimated with the
Cross-Entropy loss, thus obtaining the probability of the next symbol yi as P (yi|x) using
softmax function on the output of the network.

It may seem obvious that, in this classi�cation setting, x1:k is a sequence of k previous symbols
and yk+1 is the next symbol to predict. Our �rst intuition to train such a language model
could be to randomly sample a sequence of k+ 1 symbols in our corpus and use k symbols to
predict the next one.

Merity et al. (2017a), which is the state-of-the-art RNN language model, did not exactly
proceed that way. It only uses a sliding window of size k over the corpus to predict the
k + 1 symbol (word or character in their case). This gives a considerable boost to an RNN
architecture, maintaining a coherent state throughout the training, comparatively to randomly
sampling sequences. One important thing to note in their architecture is that the size of
the window (or history) k changes at each batch of examples. Given the predicted symbol
ŷ, the back-propagation algorithm is triggered and the optimizer then updates the weights
accordingly to make a better prediction on the next �sampled� batch of examples. The impact
of varying the size of k is discussed in the next section.

49

The importance of the window size k

When training a feed-forward language model, k is �xed since the number of input values need
to be �xed. It is important to note that every beginning of documents (sentence, paragraph,
etc.) will need to be padded by adding a special symbol at the beginning and at the end in
order to be able to begin and terminate the textual generation.

Varying the window size k makes more sense when using RNN-based or Transformer-based
language models; they are agnostic to the length of the sequence. As stated in section 2.3.1,
an RNN-based language model can take as input a sequence of symbols of arbitrary length to
generate the next symbol, from 1 to n where n can get pretty large. It thus removes the need
to pad the sequences as with n-gram or feed-forward language models. Passing sequences of
the same lengths to RNN-based or Transformer-based language models will lead to over�tting,
making the models dependent of this �xed length k. The variation of the length k is really
important, even more when comes the time to generate sequences.

Teacher Forcing

Usual language models are trained using Teacher Forcing (Goodfellow et al., 2016, Chap-
ter 10). In a language modelling perspective, suppose we have a sequence of symbols Y =

(y1, y2, . . . , yn) that a language model needs to generate. This language model will start with
the begin of sequence <BOS> token to predict the �rst symbol y1, yielding ŷ1. To predict the
next symbol y2, the model will not use its previous prediction ŷ1 but the real previous symbol
as input, y1. The same routine goes on to predict y3 using the previous real symbols y1 and
y2 and so on until the end of the sequence.

This approach yields faster convergence during training but may lead the language model to
drift during generation (or the test phase). Indeed, during generation, the language model is
only able to use its previous prediction (auto-regressive modelling) to predict the next word. In
the next section, we introduce Scheduled Sampling, a technique that mitigates this generation
problem.

Scheduled Sampling

Scheduled Sampling is the process of randomly using the previous prediction of the model ŷi−1
with a probability p during training as input the of the next step (wi = ŷi−1) to predict the
next symbol yi instead of using the real input symbol wi from the corpus. The probability p
of using the previous real symbol yi−1 or not is modelled with an inverse sigmoid function as
illustrated in Figure B.1. This inverse sigmoid decay depends on the training step, as propose
by Bengio et al. (2015) yield a higher probability to use previously predicted symbol ŷi−1 as
the training progresses.

In the beginning of the training loop, we are mostly in a Teacher Forcing scheme (see B). Then
the model gradually uses more and more its own prediction to predict the next word. This
approach may o�er better generalization performance on natural language generation since

50

p

step

1

Figure B.1 � The probability of using yi−1 instead of ŷi−1 to predict yi over time.

the model gradually learns to rely on its previously predicted symbols but it has not been
thoroughly compared against Teacher Forcing.

B.0.1 Hyperparameters

Neural language models have several hyperparameters that are common to most neural net-
work architectures (learning rate, batch size, etc.) that we won't discuss here. These hyperpa-
rameters comes into play during the training of a language model. Most of the hyperparameters
that are of interest and we are going to discuss are the ones at generation time.

Decoding Algorithm

During generation, one can either do greedy decoding (taking the next most probable symbol)
or sample the distribution (sampled generation) estimated by the language model over the
vocabulary. Greedy decoding is deterministic while sampling is stochastic (it highly depends
on the random seed).

Beam Search

Beam Search is an algorithm that optimizes the overall generation. It is highly used in machine
translation to maximize the translation of a particular language. The hyperparameter to tune
here is the size of the beam, ranging from 1 to 10. The beam size dictates the number of
possible paths to consider during the generation. Koehn and Knowles laid a good overview
of the beam size to use in the machine translation task claiming that a narrow beam (from 4
to 30) yields better results. However, choosing the right beam size is still based on a rule of
thumb.

Temperature

Temperature scaling is a hyperparameter that is easy to tune and impacts only during sampled
generation. Temperature is the coe�cient by which the logits softmax function is applied. High
temperature (> 1) �attens the distribution which will yield more diversity during sampling.
Lower temperature (< 1) makes the probability distribution over the vocabulary more peaky,
yielding a more conservative generation.

51

Top-K

Another hyperparameter that is highly tuned during generation is the number of symbols con-
sidered while sampling the distribution. Indeed, instead of considering the whole vocabulary
while sampling, an approach that yields better results at generation is to consider only the
Top-K symbols. K is usually set to 40 according to (Dai et al., 2019; Radford, 2018) for the
best results on language generation.

Top-P

Instead of limiting the sampling to the K top symbols, Zellers et al. proposed to use a
percentage of the distribution, P. In their paper, they used P = 0.96 which corresponds to using
96% of cumulative probabilities during sampling the vocabulary. However, the motivation
behind this technique as well as the value chosen is not stated at all and they do not provide
an order of magnitude on the number of symbols considered during sampling at each time
step.

52

Appendix C

Typical Underwriter-Broker discussion

Back to Section 3.2

Hi <name>,
Hoping you can help me with this one. I just took over the �le and it doesn't

look like you were advised that the insured has passed away. I was just
advised by her sister that the house is vacant and a neighbor checks on the house
daily to make it look occupied. What are our options.
Regards,
Broker

=======

Hi <name>,
Thank you for your email.
We have been made aware that the insured has passed, but were under the impres-
sion that the sister was residing in the dwelling. Can you advise the date the

dwelling went vacant? We will require a Vacancy Questionnaire be �lled

out, and front and back photos of the dwelling submitted for review.
Until that information is received and reviewed, there is currently no coverage on
this dwelling.
Furthermore, what are the future intentions of this risk? Is it set to be sold?
Please advise on the above, than you.
Kind regards,
Insurance Company

=======

Hi,
I just spoke with the insured and clari�ed our conversation from last week.

53

She lives in the house 3 weeks on and 3 weeks o�. For the 3 weeks that
she is not in the home a neighbor looks after it.
The future intentions of the home are for it to be sold. However, they have to wait
for probate to go through for the insured's husband who pre-deceased her, then
insured's probate to go through before they can sell the house.
Please advise if the vacancy questionnaire and photos are still required.
Thank you,
Broker

=======

Hi <name>!
As per the above insured, can you provide us with the executor's full name

and address for our �les?

Also, would we need to amend the mailing address to that of the executor's ad-
dress? Thank you!
Kind regards,
Insurance Company

=======

Hi,
The executor's name is <name> and her mailing address is <address>.

Please amend on the policy as well.
Regards,
Broker

Back to Section 3.2

54

Appendix D

Technical Details

In this section, we provide a methodology applicable to any Machine Learning project that
will help us deliver highly reproducible experiments conducted during this research project
(Garneau et al., 2019). We begin by introducing the programming language and associated
libraries that are going to be used to implement the proposed architectures. We then propose
a way to host the datasets that are going to be used o� the shelves as well as those that are
going to be derived from them for the speci�c settings. A tool that handles the download and
the upload of the di�erent dataset will also be introduced. Since another very important thing
to consider when running experiments is to log them all, we hereby propose to automate the
logging of the experimentations as well as the gathering of the results. These steps considerably
facilitate the automatic generation of tables and graphs, hence removes human manipulations
and possible errors. Finally, we recommend using a 100 % reproducible environment to run
the experiments, hence to Dockerize the whole project (Cito and Gall, 2016; Hartmann et al.,
2019).

D.1 Programming Language and Libraries

To implement the di�erent introduced architectures, we will use the Python programming
language. This programming language o�ers various data science libraries such as scikit-learn
(Pedregosa et al., 2011) and numpy (van der Walt et al., 2011).

Pytorch (Paszke et al., 2019) is the neural network package that will be used to develop the
di�erent models previously introduced. Poutyne (Paradis, 2018) will be used to design the
di�erent training loops needed to optimize the neural network models. The HuggingFace (Wolf
et al., 2019) library will be used to obtain the pre-trained implementations of the Transformer
Models.

D.2 Fully Reproducible Methodology

Reproducing the model and the results of an original paper can be quite a hassle. This is why
we present here a fully reproducible methodology so that the outcome of the research project
can easily be used by the whole community.

55

D.2.1 Data Version Control

Properly handling the benchmark dataset(s) is often an underestimated point. In an iterative
and collaborative setting, it is important to e�ciently host and version the data. We thus
recommend a tool designed to handle those two elements �awlessly; Data Version Control
(DVC). Similar to standard Version Control Systems (VCS) like Git1, DVC tracks the di�erent
state of the dataset during development as well as in between the processing steps before
obtaining the �nal results of the model. We will be using the Python DVC library 2 with
Amazon S3 as the remote repository needed to host our di�erent datasets.

D.2.2 Experimentation Logging

When doing research, it is easy to enter the experiment's hurry loop; as soon as we have an
idea, we code it and we launch our main script without committing the modi�cations. Grossly
keeping track of an architecture and its corresponding results in our head or a spreadsheet is
good for nothing when it comes to the time to retrieve and analyze past experiments. We thus
propose to automate the process of logging as well as retrieving the results of every experiment
in order to reduce the risk of losing experiment information. To this end, we used a �exible
yet emergent tool that beautifully solves this problem; ML�ow3,4.

ML�ow provides a model agnostic Python API that lets you track not only the results of a
given con�guration but also the associated source code, the dataset used, and much more. We
also believe it is vital to use such a framework for any scienti�c team doing serious research
to reduce the overhead and stress of manually logging and keeping the information about
experimentations, especially considering the low e�ort it requires to setup.

D.2.3 Dockerization

Docker5 is a software that provides an abstraction of the system libraries, tools, and runtime.
A Docker Container is essentially a lightweight executable package that can run on every6

environment. Providing a Docker Image that contains all the necessary libraries and source
code is a mandatory step in order to provide fully reproducible research.

1https://git-scm.com/
2https://dvc.org
3https://mlflow.org
4One can �nd numerous alternatives such as Sacred, Comet.ml or Weights and Biases for example.
5https://www.docker.com/
6As long as the environment provides the necessary hardware speci�cations.

56

https://git-scm.com/
https://dvc.org
https://mlflow.org
https://sacred.readthedocs.io/en/stable/
https://www.comet.ml/
https://www.wandb.com/
https://www.docker.com/

Bibliography

Rami Al-Rfou', Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level
language modeling with deeper self-attention. CoRR, abs/1808.04444, 2018.

Marcin Andrychowicz and Karol Kurach. Learning e�cient algorithms with hierarchical at-
tentive memory. ArXiv, abs/1602.03218, 2017.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. A robust self-learning method for fully
unsupervised cross-lingual mappings of word embeddings. In ACL, 2018.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. On the cross-lingual transferability of
monolingual representations. ArXiv, abs/1910.11856, 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Junwei Bao, Duyu Tang, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. Text generation
from tables. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27:311�
320, 2019.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. In NIPS, 2015.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilis-
tic language model. J. Mach. Learn. Res., 3(null):1137�1155, March 2003. ISSN 1532-4435.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp Koehn.
One billion word benchmark for measuring progress in statistical language modeling. In
INTERSPEECH, 2013.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statis-
tical machine translation. ArXiv, abs/1406.1078, 2014.

J. Cito and H. C. Gall. Using docker containers to improve reproducibility in software engi-
neering research. In IEEE/ACM, pages 906�907, 2016.

Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Hervé Jé-
gou. Word translation without parallel data. ArXiv, abs/1710.04087, 2017.

57

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan R.
Salakhutdinov. Transformer-xl: Attentive language models beyond a �xed-length context.
CoRR, abs/1901.02860, 2019.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric C. Frank, Piero Molino,
Jason Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to
controlled text generation. ArXiv, abs/1912.02164, 2019.

Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan van
Noord, and Malvina Nissim. Bertje: A dutch bert model. ArXiv, abs/1912.09582, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-
scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 248�255, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

Georgiana Dinu and Marco Baroni. Improving zero-shot learning by mitigating the hubness
problem. ArXiv, 1412.6568, 2014.

Je�rey L. Elman. Finding structure in time. Cognitive Science, 14:179�211, 1990.

Jessica Ficler and Yoav Goldberg. Controlling linguistic style aspects in neural language
generation. arXiv preprint arXiv:1707.02633, 2017.

Nicolas Garneau, Mathieu Godbout, David Beauchemin, Audrey Durand, and Luc Lamon-
tagne. A robust self-learning method for fully unsupervised cross-lingual mappings of word
embeddings: Making the method robustly reproducible as well. ArXiv, abs/1912.01706,
2019.

Ross B. Girshick, Je� Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer

Vision and Pattern Recognition, pages 580�587, 2013.

Yoav Goldberg. Neural network methods for natural language processing. Synthesis Lectures
on Human Language Technologies, 10(1):1�309, 2017.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Frage: Frequency-
agnostic word representation. ArXiv, abs/1809.06858, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850,
2013.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating copying mechanism
in sequence-to-sequence learning. ArXiv, abs/1603.06393, 2016.

58

http://www.deeplearningbook.org

Mareike Hartmann, Yova Kementchedjhieva, and Anders Søgaard. Comparing unsupervised
word translation methods step by step. In NeurIPS 2019, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770�778, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770�778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:
1735�1780, 1997.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-e�cient transfer learning
for nlp. In ICML, 2019.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin
Johnson. Xtreme: A massively multilingual multi-task benchmark for evaluating cross-
lingual generalization. ArXiv, abs/2003.11080, 2020.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring
the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Dan Jurafsky and James H. Martin. N-gram language models. In Speech and Language

Processing, 2018.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard
Socher. Ctrl: A conditional transformer language model for controllable generation. ArXiv,
abs/1909.05858, 2019.

Chloé Kiddon, Luke S. Zettlemoyer, and Yejin Choi. Globally coherent text generation with
neural checklist models. In EMNLP, 2016.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. Inducing crosslingual distributed
representations of words. In COLING, 2012.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. 2005.

Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In
NMT@ACL, 2017.

Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. CoRR,
abs/1901.07291, 2019.

Rémi Lebret, David Grangier, and Michael Auli. Neural text generation from structured data
with application to the biography domain. In EMNLP, 2016.

59

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and Daniel Jurafsky. Adversarial learning for
neural dialogue generation. In EMNLP, 2017.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. Text Summarization
Branches Out, 2004.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco:
Common objects in context. In ECCV, 2014.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent Charlin, and Joelle
Pineau. How not to evaluate your dialogue system: An empirical study of unsupervised
evaluation metrics for dialogue response generation. arXiv preprint arXiv:1603.08023, 2016.

Fenglin Liu, Yuanxin Liu, Xuancheng Ren, Kai Lei, and Xu Sun. Aligning visual regions and
textual concepts: Learning �ne-grained image representations for image captioning. ArXiv,
abs/1905.06139, 2019a.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. Generating wikipedia by summarizing long sequences. CoRR,
abs/1801.10198, 2018.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and Yu Hu. Learning semantic word embeddings
based on ordinal knowledge constraints. In ACL, 2015.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. 2019b.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to infor-
mation retrieval. 2008.

Mitchell P. Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark
Ferguson, Karen Katz, and Britta Schasberger. The penn treebank: Annotating predicate
argument structure. In HLT, 1994.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Su'arez, Yoann Dupont, Laurent Romary,
'Eric Villemonte de la Clergerie, Djamé Seddah, and Benoît Sagot. Camembert: a tasty
french language model. ArXiv, abs/1911.03894, 2019.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural
language models. CoRR, abs/1707.05589, 2018.

Gábor Melis, Tomás Kociský, and Phil Blunsom. Mogri�er lstm. ArXiv, abs/1909.01792,
2020.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm
language models. CoRR, abs/1708.02182, 2017a.

60

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. CoRR, abs/1609.07843, 2017b.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language
modeling at multiple scales. CoRR, abs/1803.08240, 2018.

Tomas Mikolov. Statistical language models based on neural networks. 2012.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Je�rey Dean. E�cient estimation of word
representations in vector space. CoRR, abs/1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Je�rey Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, 2013b.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. Step-by-step: Separating planning from
realization in neural data-to-text generation. In NAACL-HLT, 2019.

Nikola Mrksic, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gai¢, Lina Maria Rojas-
Barahona, Pei hao Su, David Vandyke, Tsung-Hsien Wen, and Steve J. Young. Counter-
�tting word vectors to linguistic constraints. In HLT-NAACL, 2016.

Nikola Mrksic, Ivan Vulic, Diarmuid Ó Séaghdha, Ira Leviant, Roi Reichart, Milica Gasic,
Anna Korhonen, and Steve J. Young. Semantic specialization of distributional word vector
spaces using monolingual and cross-lingual constraints. Transactions of the Association for

Computational Linguistics, 5:309�324, 2017.

Anh Nguyen, Je� Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug play
generative networks: Conditional iterative generation of images in latent space. 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 3510�3520, 2016.

Joakim Nivre, Marie-Catherine de Marne�e, Filip Ginter, Yoav Goldberg, Jan Hajic, Christo-
pher D. Manning, Ryan T. McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut
Tsarfaty, and Daniel Zeman. Universal dependencies v1: A multilingual treebank collection.
In LREC, 2016.

Chris Olah and Shan Carter. Attention and augmented recurrent neural networks. Distill,
2016. doi: 10.23915/distill.00001. URL http://distill.pub/2016/augmented-rnns.

Masataka Ono, Makoto Miwa, and Yutaka Sasaki. Word embedding-based antonym detection
using thesauri and distributional information. In HLT-NAACL, 2015.

Kishore Papineni, Salim Roukos, ToddWard, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association

for computational linguistics, pages 311�318. Association for Computational Linguistics,
2002.

Frédérik Paradis. Poutyne: A Keras-like framework for PyTorch, 2018. https://poutyne.org.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the di�culty of training recurrent
neural networks. In ICML, 2013.

61

http://distill.pub/2016/augmented-rnns
https://poutyne.org

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024�8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825�2830, 2011.

Hao Peng, Bhuwan Dhingra, and Dipanjan Das. Generation with exemplar-based adaptive
decoding. 2019.

Je�rey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In EMNLP, 2014.

Matthew Peters, Sebastian Ruder, and Noah A. Smith. To tune or not to tune? adapting
pretrained representations to diverse tasks. ArXiv, abs/1903.05987, 2019.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke S. Zettlemoyer. Deep contextualized word representations. ArXiv,
abs/1802.05365, 2018.

Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual bert? In
ACL, 2019.

Edoardo Maria Ponti, Ivan Vulic, Goran Glavas, Nikola Mrksic, and Anna Korhonen. Ad-
versarial propagation and zero-shot cross-lingual transfer of word vector specialization. In
EMNLP, 2018.

Edoardo Maria Ponti, Ivan Vulic, Goran Glavas, Roi Reichart, and Anna Korhonen. Cross-
lingual semantic specialization via lexical relation induction. In EMNLP/IJCNLP, 2019.

O�r Press and Lior Wolf. Using the output embedding to improve language models. In EACL,
2017.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Alec Radford, Je� Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019.

Milo² Radovanovi¢, Alexandros Nanopoulos, and Mirjana Ivanovi¢. Hubs in space: Popular
nearest neighbors in high-dimensional data. JMLR, 11:2487�2531, December 2010. ISSN
1532-4435. URL http://dl.acm.org/citation.cfm?id=1756006.1953015.

62

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dl.acm.org/citation.cfm?id=1756006.1953015

Sylvestre-Alvise Rebu�, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. In NIPS, 2017.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In EMNLP/IJCNLP, 2019.

Samuel Rönnqvist, Jenna Kanerva, Tapio Salakoski, and Filip Ginter. Is multilingual bert
�uent in language generation? ArXiv, abs/1910.03806, 2019.

Sascha Rothe and Hinrich Schütze. Autoextend: Extending word embeddings to embeddings
for synsets and lexemes. In ACL, 2015.

Sebastian Ruder, Ivan Vuli'c, and Anders Sogaard. A survey of cross-lingual word embedding
models. 2018.

Erik F. Tjong Kim Sang. Introduction to the conll-2002 shared task: Language-independent
named entity recognition. ArXiv, cs.CL/0209010, 2002.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. ArXiv, cs.CL/0306050, 2003.

Roy Schwartz, Roi Reichart, and Ari Rappoport. Symmetric pattern based word embeddings
for improved word similarity prediction. In CoNLL, 2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. CoRR, abs/1508.07909, 2016.

Louis Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and Ray Kurzweil. Gen-
erating long and diverse responses with neural conversation models. CoRR, abs/1701.03185,
2017.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations
for deep learning in nlp. In ACL, 2019.

Ilya Sutskever, James Martens, and Geo�rey E Hinton. Generating text with recurrent neural
networks. 2011.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In NIPS, 2014.

Sho Takase, Jun Suzuki, and Masaaki Nagata. Direct output connection for a high-rank
language model. In EMNLP, 2018.

Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The numpy array: A structure
for e�cient numerical computation. Computing in Science Engineering, 13:22�30, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NIPS, 2015.

63

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma, Juhani Luotolahti, Tapio Salakoski,
Filip Ginter, and Sampo Pyysalo. Multilingual is not enough: Bert for �nnish. ArXiv,
abs/1912.07076, 2019.

Ivan Vulic and Anna Korhonen. On the role of seed lexicons in learning bilingual word
embeddings. In ACL, 2016.

Ivan Vuli¢ and Nikola Mrk²i¢. Specialising word vectors for lexical entailment. In Proceedings

of the 2018 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1134�1145, New
Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/
v1/N18-1103. URL https://www.aclweb.org/anthology/N18-1103.

Ivan Vulic, Nikola Mrksic, Roi Reichart, Diarmuid Ó Séaghdha, Steve J. Young, and Anna
Korhonen. Morph-�tting: Fine-tuning word vector spaces with simple language-speci�c
rules. In ACL, 2017.

Michael E. Wall, Andreas Rechtsteiner, and L. M. Rocha. Singular value decomposition and
principal component analysis. 2003.

Alex Wang and Kyunghyun Cho. Bert has a mouth, and it must speak: Bert as a markov
random �eld language model. CoRR, abs/1902.04094, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding.
In ICLR, 2018.

Dilin Wang, Chengyue Gong, and Qiang Liu. Improving neural language modeling via adver-
sarial training. ArXiv, abs/1906.03805, 2019.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Jianshu Ji, Cuihong
Cao, Daxin Jiang, and Ming Zhou. K-adapter: Infusing knowledge into pre-trained models
with adapters. ArXiv, abs/2002.01808, 2020.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina Maria Rojas-Barahona, Pei hao Su,
Stefan Ultes, David Vandyke, and Steve J. Young. A network-based end-to-end trainable
task-oriented dialogue system. In EACL, 2017.

Wikipedia contributors. Byte pair encoding �Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Byte_pair_encoding&oldid=931113014, 2019. [On-
line; accessed 28-December-2019].

Sam Wiseman, Stuart M. Shieber, and Alexander M. Rush. Learning neural templates for
text generation. In EMNLP, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, R'emi Louf, Morgan Funtowicz, and Jamie Brew. Hugging-
face's transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771,
2019.

64

https://www.aclweb.org/anthology/N18-1103
https://en.wikipedia.org/w/index.php?title=Byte_pair_encoding&oldid=931113014
https://en.wikipedia.org/w/index.php?title=Byte_pair_encoding&oldid=931113014

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and
Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding.
ArXiv, abs/1906.08237, 2019.

Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang Li, and Xiaoming Li. Neural generative
question answering. In IJCAI, 2016.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with
semantic attention. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4651�4659, 2016.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner,
and Yejin Choi. Defending against neural fake news. ArXiv, abs/1905.12616, 2019.

65

	Résumé
	Abstract
	Contents
	List of Figures
	Remerciements
	Introduction
	Background
	N-Gram Language Models
	Language Models
	N-Gram Language Models

	Word Embeddings
	Cross-Lingual Word Embedding Models

	Neural Networks
	Feed-Forward Neural Networks
	Recurrent Neural Networks
	Transformer Neural Networks

	Literature Review
	Language Models Granularity
	Conditional Language Models
	N-Gram Language Models Limitations

	Evaluation of Language Models
	Neural Language Models
	Models Variety

	Neural Language Generation
	Free Form Generation
	Conditioned Generation

	Research Avenues
	Generalizing Neural Language Generation to Other Languages
	Related Work
	Research Proposal

	Transferring Neural Language Models for Multimodal Conditional Textual Generation
	Related Work
	Research Proposal

	Grounding Multilingual Neural Language Models Using Structured Data
	Related Work
	Research Proposal

	Conclusion
	Long-Short-Term-Memory Networks
	Language Models Training Details
	Hyperparameters

	Typical Underwriter-Broker discussion
	Technical Details
	Programming Language and Libraries
	Fully Reproducible Methodology
	Data Version Control
	Experimentation Logging
	Dockerization

	Bibliography

